Giúp em với ạ❤❤❤❤. Em đang cần gấp lắm ạ. Huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\sqrt{8^2+6^2}-\sqrt{16}+\dfrac{1}{2}\sqrt{\dfrac{4}{25}}\)
\(=10-4+\dfrac{1}{2}\cdot\dfrac{2}{5}=6+\dfrac{1}{5}=\dfrac{31}{5}\)
\(\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\left(0,5-1\dfrac{3}{5}\right)\)
\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\left(\dfrac{1}{2}-\dfrac{8}{5}\right)\)
\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\dfrac{11}{10}\)
\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{33}{80}\)
\(\Rightarrow x:2,2=\dfrac{33}{80}:\dfrac{1}{6}\)
\(\Rightarrow x:2,2=\dfrac{99}{40}\)
\(\Rightarrow x=\dfrac{99}{40}\times2,2\)
\(\Rightarrow x=\dfrac{1089}{200}\)
=>(x:2,2)*1/6=-3/8(1/2-8/5)=33/80
=>x:2,2=99/40
=>x=1089/200
1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
1:
a: Khi m=1 thì (1) sẽ là x^2+2x-5=0
=>\(x=-1\pm\sqrt{6}\)
b: Δ=(2m)^2-4(-2m-3)
=4m^2+8m+12
=4m^2+8m+4+8=(2m+2)^2+8>=8>0
=>Phương trình luôn có hai nghiệm phân biệt
2:
Thay x=-1 và y=2 vào (P), ta được:
a*(-1)^2=2
=>a=2
Gọi xy là tiếp tuyến tại A của (O)
=>góc xAC=góc ABC
xy//DE
=>góc xAE=góc AED
=>góc AED=góc ABC
Xét ΔAED và ΔABC có
góc AED=góc ABC
góc EAD chung
=>ΔAED đồng dạng với ΔABC
=>AE/AB=AD/AC
=>AE*AC=AB*AD
1 Has - tried
2 Did you go
3 have - been
4 have traveled
5 have been
6 have - finished
7came - told
8 have visted - went - was - haven't visited
9 did you come
10 came
11 Did you watch
12 have - left
13 have - known
14 met - have known
15 happened
16 Did you read
cái này mình có đáp án là:
1.Has-tried
2.did you go
3.have-been
4.have travelend
5.have been
mình làm 5 câu thui nha. Chúc bạn học tốt
Tứ giác ACBD nội tiếp \(\Rightarrow\widehat{ADC}=\widehat{ABC}\) (cùng chắn AC) (1)
Lại có \(\widehat{ADC}+\widehat{DEH}=90^0\) (tam giác DEH vuông tại H theo gt) (2)
Gọi M là trung điểm BC, nối EM
Trong tam giác vuông BCE, EM là trung tuyến ứng với cạnh huyền
\(\Rightarrow EM=\dfrac{1}{2}BC=BM\Rightarrow\Delta BEM\) cân tại M
\(\Rightarrow\widehat{ABC}=\widehat{MEB}\) (3)
\(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\widehat{DEH}+\widehat{MEB}=90^0\)
\(\Rightarrow\widehat{DEH}+\widehat{MEB}+\widehat{DEB}=90^0+90^0=180^0\)
\(\Rightarrow M;E;H\) thẳng hàng hay HE đi qua trung điểm M của BC
26.
\(\sqrt{\dfrac{-3}{2a^3}}=\sqrt{\dfrac{-3a}{2a^4}}=\dfrac{1}{a^2}\sqrt{\dfrac{-3a}{2}}\)
Đáp án B
28.
\(\sqrt{\dfrac{a^3}{a}}=\sqrt{a^2}=\left|a\right|=-a\)
Đáp án B