K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2016

? cái j` z? 

13 tháng 3 2016

ai duyet di nha

27 tháng 2 2018

gọi A là vế trái của BĐT :

nếu \(x\ge1\) thi ta viết A dưới dạng \(x^7\left(x-1\right)+x\left(x-1\right)+1\)

do \(x\ge1\) nên A>0

nếu x<1 thì ta viết A dưới dạng \(x^8+x^2\left(1-x^5\right)+\left(1-x\right)\) Do x<1 nên \(1-x^5>0\), do đó A>0

mệnh đề đã được CM

27 tháng 2 2018

a>b và c>0 => ac > bc (1)

c>d và b>0 => bc>bd (2) Từ (1) và (2) theo t/c bắc cầu của ">" suy ra : ac>bd (đpcm)

27 tháng 2 2018

Ta có:

\(a>b>0\)\(c>d>0\)

\(\Rightarrow ac>bc\)\(bc>bd\)

\(\Rightarrow ac>bd\left(đpcm\right)\)

12 tháng 4 2018

ta có:ab=bc

=>ac:c=bc:c

=>a=b

Vậy a=b

2 tháng 5 2023

cái này nếu chia cho c thì tức là công nhận định lí r vì chia c = *c^-1 ở 2 vế r. Ở nước ngoài mình sẽ k đc chứng minh như vậy. Mình sẽ chứng minh a*c =a + a + a +....+a, b*c cũng thế. c lần a = c lần b vì a=b theo tính chất giao hoán vậy nên ac=bc

 

2 tháng 3 2018

áp dụng BĐT Cô si :

+ cho cặp số a,b ta được \(a+b\ge2\sqrt{ab}\left(1\right)\)

+ cho cặp số \(\dfrac{1}{a}+\dfrac{1}{b}\) ta được \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\left(2\right)\)

Nhân hai vế với \(\left(1\right),\left(2\right)\) ta được :\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.\dfrac{2}{\sqrt{ab}}=4\) (đpcm)

19 tháng 10 2017

\(A=2+2^2+...+2^{99}\)

\(2A=2\left(2+2^2+...+2^{99}\right)\)

\(2A=2^2+2^3+...+2^{100}\)

\(2A-A=\left(2^2+2^3+...+2^{100}\right)-\left(2+2^2+...+2^{99}\right)\)

\(A=2^{100}-2\)