K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

a>b và c>0 => ac > bc (1)

c>d và b>0 => bc>bd (2) Từ (1) và (2) theo t/c bắc cầu của ">" suy ra : ac>bd (đpcm)

27 tháng 2 2018

Ta có:

\(a>b>0\)\(c>d>0\)

\(\Rightarrow ac>bc\)\(bc>bd\)

\(\Rightarrow ac>bd\left(đpcm\right)\)

24 tháng 8 2020

Ta có:\(a+b+c+d=0\)

\(a+c=-\left(b+d\right)\)

\(\left(a+c\right)^3=-\left(b+d\right)^3\)

\(\Leftrightarrow a^3+c^3+3ac\left(a+c\right)=-\left[b^3+d^3+3bd\left(b+d\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)-3ac\left(a+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)+3ac\left(b+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\left(đpcm\right)\)

24 tháng 8 2020

Sửa đề một chút : Cmr a+ b+ c+ d= 3 ( ac - bd ) ( b + d ) 

a + b + c + d = 0 

=> a + c = - ( b + d )

\(\Leftrightarrow\left(a+c\right)^3=-\left(b+d\right)^3\)

\(\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-d^3-3b^2d-3bd^2\)

\(\Leftrightarrow a^3+3ac\left(a+c\right)+c^3=-b^3-d^3-3bd\left(b+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\)( đpcm )

12 tháng 8 2017

Dựa vào a^2 +b^2 = 1 và c^2+  d^2 = 1 và ac + bd +0

Ta có ab + cd = ab.1 + cd.1 = ab.(c^2 + d^2) + cd.(a^2+b^2)

                       = abc^2 + abd^2 + cda^2 + cdb^2

                       = ac(bc + da) + bd(ad + cb) = (ac+bd).(bc+da) = 0 . (bc+da) = 0

Vậy ab + cd =

1 tháng 11 2019

Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)

\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)

Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)

                        \(ac-bd=\left(a+b\right)\left(b+c\right)\)

Từ 3 điều trên ta suy ra đpcm

16 tháng 1 2018

tớ mới học lớp  7 thôi

20 tháng 10 2018

1-12334567890+1234567890

30 tháng 9 2019

Câu hỏi của Lê Tài Bảo Châu - Toán lớp 8 - Học toán với OnlineMath

19 tháng 12 2016

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)

Dấu "=" xảy ra khi \(x=1\)

Bài 2:

Áp dụng BĐT AM-GM ta có:

\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\) (1)

\(ab+cd\ge2\sqrt{abcd}=2\) (2)

\(ac+bd\ge2\sqrt{acbd}=2\) (3)

\(ad+bc\ge2\sqrt{adbc}=2\) (4)

Cộng theo vế của (1),(2),(3),(4) ta có điều phải chứng minh

Dấu "=" khi \(\begin{cases}a=b=c=d\\abcd=1\end{cases}\)\(\Rightarrow a=b=c=d=\frac{1}{4}\)

 

19 tháng 12 2016

1) \(x+\frac{1}{x}\ge2\left(1\right)\)

<=> \(\frac{x^2+1}{x}\ge2\)

<=> x2 + 1 \(\ge\)2x

<=> x2 + 1 - 2x \(\ge\) 0

<=> (x - 1)2 \(\ge\)0 (2)

Bđt (2) đúng vậy bđt (1) được chứng minh

b) Áp dụng bđt AM-GM cho 10 số dương ta có:

a2+b2+c2+d2+ab+ac+ad+bc+bd+cd

\(\ge10\sqrt[10]{a^2.b^2.c^2.d^2.ab.ac.ad.bc.bd.cd}=10\sqrt[10]{\left(a.b.c.d\right)^5}\)

\(=10\sqrt[10]{1}=10\left(đpcm\right)\)

 

AH
Akai Haruma
Giáo viên
1 tháng 7 2019

Lời giải:

Sử dụng điều kiện $a+b+c+d\Rightarrow a+c=-b-d$. Khi đó ta có:

\(a^3+b^3+c^3+d^3=(a^3+c^3)+(b^3+d^3)\)

\(=(a+c)^3-3ac(a+c)+(b+d)^3-3bd(b+d)\)

\(=(-b-d)^3-3ac(a+c)+(b+d)^3-3bd(b+d)\)

\(=-3ac(a+c)-3bd(b+d)=3ac(b+d)-3bd(b+d)\)

\(=3(b+d)(ac-bd)\)

Ta có đpcm.