Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-\sqrt{x}+\dfrac{1}{2}\)
\(=x^2-x+\dfrac{1}{4}+x-\sqrt{x}+\dfrac{1}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\\sqrt{x}-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\) vô nghiệm
Vậy \(x^2-\sqrt{x}+\dfrac{1}{2}>0\forall x\ge0\)
\(f\left(x\right)=\left(1-m^2\right)\left(x+1\right)^3+x^2-x-3\) là hàm đa thức liên tục trên R. Do đó nó liên tục trên \(\left[-2;-1\right]\)
Ta có \(f\left(-1\right)=-1< 0\) và \(f\left(-2\right)=m^2+2>0\) nên \(f\left(-1\right)f\left(-2\right)< 0\) với mọi m.
Do đó, phương trình \(f\left(x\right)=0\) luôn có ít nhất một nghiệm trong khoảng (-2; -1) với mọi m. Nghĩa là, phương trình \(\left(1-m^2\right)\left(x+1\right)^3+x^2-x-3=0\) luôn có nghiệm với mọi m.
Xét pt cho là pt bậc hai một ẩn $x$ ( Với $a=1 \neq 0, b=-2(m-1), c = m-3$ )
Ta có : \(\Delta'=b'^2-ac\)
\(=\left[-\left(m-1\right)\right]^2-\left(m-3\right)\cdot1\)
\(=m^2-2m+1-m+3\)
\(=m^2-3m+4=\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\)
Nên pt cho luôn có hai nghiệm phân biệt \(\forall m\)
Đề bài không đúng, ví dụ với \(m=-1\) phương trình trở thành \(x^2-2x+5=0\) đây là một phương trình vô nghiệm
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >1\end{matrix}\right.\)
\(A=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
\(=\dfrac{x-1}{\sqrt{x}}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1+1-\sqrt{x}}\)
\(=\dfrac{x-1}{x-\sqrt{x}}\cdot\left(\sqrt{x}+1\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
b: \(x=\dfrac{2}{2+\sqrt{3}}=2\left(2-\sqrt{3}\right)=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
Khi \(x=\left(\sqrt{3}-1\right)^2\) thì \(P=\dfrac{\left(\sqrt{3}-1+1\right)^2}{\sqrt{3}-1}=\dfrac{3}{\sqrt{3}-1}=\dfrac{3\left(\sqrt{3}+1\right)}{2}=\dfrac{3\sqrt{3}+3}{2}\)
c: \(P-2=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}-2\)
\(=\dfrac{x+2\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}}=\dfrac{x+1}{\sqrt{x}}>0\)
=>P>2
a: Δ=(2m+2)^2-4(m-6)
=4m^2+8m+4-4m+24
=4m^2+4m+28
=(2m+1)^2+27>0
=>Phương trình luôn có hai nghiệm phân biệt
c: Để (1) có ít nhất 1 nghiệm dương thì
m-6<0 hoặc (2m+2>0 và m-6>0)
=>m>6 hoặc m<6