Tìm a,b,c để
f(x)=x5-2x4-6x3+ax2+bx+c chia hết cho
g(x)=(x-3)(x2-1)
ai giải giúp vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
\(a.f\left(1\right)=f\left(-1\right)\Leftrightarrow a+b+c=a-b+c\Leftrightarrow2b=0\Leftrightarrow b=0\)
\(\Rightarrow f\left(x\right)=ax^2+c\)
Khi đó ta có:
\(\left\{{}\begin{matrix}f\left(m\right)=am^2+c\\f\left(-m\right)=am^2+c\end{matrix}\right.\Rightarrow f\left(m\right)=f\left(-m\right)\forall m\)
1.
\(f\left(x\right)=2x^4+6x^3+8x^2+12x+1\)
2.
\(h\left(x\right)=\left(2x^4+6x^3+8x^2+12x+1\right)-\left(2x^4+6x^3+17x^2+12x-26\right)\)
\(=-9x^2+27\)
3.
\(h\left(x\right)=0\Leftrightarrow-9x^2+27=0\)
\(\Leftrightarrow x^2=3\Rightarrow x=\pm\sqrt{3}\)
\(f\left(0\right)=c⋮3\) ;
\(f\left(1\right)=a+b+c⋮3\) mà \(c⋮3\Rightarrow a+b⋮3\)
\(f\left(-1\right)=a-b+c=-2b+\left(a+b+c\right)⋮3\) mà \(a+b+c⋮3\Rightarrow-2b⋮3\Rightarrow b⋮3\) (do 2 và 3 nguyên tố cùng nhau)
\(\left\{{}\begin{matrix}a+b+c⋮3\\b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow a⋮3\)
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Có: \(f\left(x\right)=2ax^2-4\left(bx-1\right)+5x+c-11\)
\(=2ax^2-4bx+4+5x+c-11\)
\(=2ax^2+\left(-4b+5\right)x+\left(c-11\right)\)
\(\Rightarrow f\left(x\right)=x^2-5x+6\Leftrightarrow\left\{{}\begin{matrix}2a=1\\-4b+5=-5\\c-11=6\end{matrix}\right.\) (theo đồng nhất hệ số)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{5}{2}\\c=17\end{matrix}\right.\)
a) P(x)=4x2-6x+a; Q(x)=x-3
Lấy P(x):Q(x)=4x-6 dư a+30
Vậy để P(x)⋮Q(x) ⇒ a+30=0 ⇒ a=-30
b) P(x)=2x2+x+a; Q(x)=x+3
Lấy P(x):Q(x)=2x-7 dư a+21
Vậy để P(x)⋮Q(x) ⇒ a+21=0 ⇒ a=-21
c) P(x)=x3+ax2-4; Q(x)=x2+4x+4
Lấy P(x):Q(x)=x+a-4 dư -4(a-5)x+12
Vậy để P(x)⋮Q(x) ⇒ -4(a-5)x+12=0 ⇒ (a-5)x=3
⇒ a-5 ϵ {-1;1;-3;3} (a ϵ Z)
⇒ a ϵ {4;6;2;8}
d) P(x)=2x2+ax+1; Q(x)=x-3
Lấy P(x):Q(x)=2x+a+6 dư 3a+19
Vậy để P(x)⋮Q(x) ⇒ 3a+19=0 ⇒ a=-19/3
e) P(x)=ax5+5x4-9; Q(x)=x-1
Lấy P(x):Q(x)=ax4+(a-5)x3+(a-5)x2+(a-5)x+1 dư a-4
Vậy để P(x)⋮Q(x) ⇒ a-4=0 ⇒ a=4
f) P(x)=6x3-x2-23x+a; Q(x)=2x+3
Lấy P(x):Q(x)=3x2-5x-4 dư a+12
Vậy để P(x)⋮Q(x) ⇒ a+12=0 ⇒ a=-12
g) P(x)=x3-6x2+ax-6 Q(x)=x-2
Lấy P(x):Q(x)=x2-2x+a-4 dư 2(a-4)-6
Vậy để P(x)⋮Q(x) ⇒ 2(a-4)-6=0 ⇒ a=7
Bài h có a,b bạn xem lại đề