S=1+1/2+1/3+.....+1/2100-1
CMR: S<100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2\left(\sqrt{n+1}-\sqrt{n}\right)=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{2}{\sqrt{n+1}+\sqrt{n}}< \dfrac{2}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)
\(\Rightarrow S>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)=2\left(\sqrt{101}-1\right)>18\)
\(2\left(\sqrt{n}-\sqrt{n-1}\right)=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)}=\dfrac{2}{\sqrt{n}+\sqrt{n-1}}>\dfrac{2}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)
\(\Rightarrow S< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)=1+2\left(\sqrt{100}-1\right)=19\)
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Mà \(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=2-\dfrac{1}{100}< 2\)
\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Vậy \(S< 2\left(đpcm\right).\)
Câu 1 :
Ta có :
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
........................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)
\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)
\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)
\(\Leftrightarrow S< 2\rightarrowđpcm\)
Ta có :
S= 1/51 +1/52 +..+1/100
Vì 1/51>1/52>...>1/100
=> S >1/100 * 50 =1/2 (1)
Vì 1/100 <1/99<...<1/51<1/50
=> S < 1/50 * 50=1 (2)
Từ (1),(2) => 1/2 < S<1
P=1/2^2+1/2^3+...+1/2^2018
2P=1/2 +1/2^2 +...+1/2^2017
=> 2P-P= (1/2 +1/2^2 +...+1/2^2017)-(1/2^2+1/2^3+...+1/2^2018 )
=> P=1/2 -1/2^2018 <1/2 <3/4
Ta có: \(\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}.50=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}\)
Ta có \(\frac{1}{51}< \frac{1}{50};\frac{1}{52}< \frac{1}{50};...;\frac{1}{100}< \frac{1}{50}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}.50=1\)
\(\Rightarrow S< 1\)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1+1-\dfrac{1}{100}\)
\(=2-\dfrac{1}{100}< 2\)
\(\Rightarrow S< 2\left(đpcm\right)\)
Vậy S < 2
S=1/20+(1/21+1/22-1)+(1/22+...+1/23-1)+...+(1/299+...+1/2100-1) (100 cặp)
S<1/20.20+1/21.21+1/22.22+...+1/299.299
S<1+1+1+...+1 (100 số 1)
S<100.1
S<100 (ĐPCM)