K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó; ΔABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=R\sqrt{3}\)

b: Xét ΔDOB có

BA là đường trung tuyến

BA=DO/2

Do đó: ΔDOB vuông tại B

hay DB là tiếp tuyến của (O)

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4

13 tháng 12 2023

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AC=R\sqrt{3}\)

b:

Ta có: AB=AO=R

OA=AD=R=DO/2

Do đó: \(AB=OA=OD=\dfrac{DO}{2}\)

Xét ΔDBO có

BA là đường trung tuyến

\(BA=\dfrac{DO}{2}\)

Do đó: ΔDBO vuông tại B

=>DB\(\perp\)BO tại B

=>DB là tiếp tuyến của (O)

a: Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó: ΔABC vuông tại B

ΔBAC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt{3}\)

Xét ΔBAC vuông tại B có

\(sinBAC=\dfrac{BC}{AC}=\dfrac{1}{2}\)

nên \(\widehat{BAC}=30^0\)

b: ΔOAB cân tại O

mà OH là đường cao

nên OH là phân giác của \(\widehat{AOB}\)

Xét ΔOAD và ΔOBD có

OA=OB

\(\widehat{AOD}=\widehat{BOD}\)

OD chung

Do đó: ΔOAD=ΔOBD

=>\(\widehat{OAD}=\widehat{OBD}=90^0\)

=>DB là tiếp tuyến của (O)

c: ΔABC vuông tại B

=>\(\widehat{BAC}+\widehat{BCA}=90^0\)

=>\(\widehat{BCA}=90^0-30^0=60^0\)

Xét ΔOBC có OB=OC và \(\widehat{BCO}=60^0\)

nên ΔOBC đều

=>ΔBOC cân tại B
ΔBOC cân tại B

mà BM là đường cao

nên M là trung điểm của OC

ΔOBE cân tại O

mà OM là đường cao

nên M là trung điểm của BE

Xét tứ giác OBCE có

M là trung điểm chung của OC và BE

nên OBCE là hình bình hành

Hình bình hành OBCE có OB=OE

nên OBCE là hình thoi

 

10 tháng 12 2023

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AC=R\sqrt{3}\)

b: Ta có: ΔOAC cân tại O

mà OE là đường trung tuyến

nên OE là phân giác của góc AOC

=>OF là phân giác của góc AOC

Xét ΔOCF và ΔOAF có

OC=OA

\(\widehat{COF}=\widehat{AOF}\)

OF chung

Do đó: ΔOCF=ΔOAF

=>\(\widehat{OAF}=\widehat{OCF}=90^0\)

=>FA là tiếp tuyến của (O)

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Xét ΔABC vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(1\right)\)

Xét ΔMAB vuông tại A có AC là đường cao

nên \(MC\cdot BC=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)

24 tháng 12 2018

câu b là vẽ dây cung vuông góc với oc nhá !