Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó; ΔABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=R\sqrt{3}\)
b: Xét ΔDOB có
BA là đường trung tuyến
BA=DO/2
Do đó: ΔDOB vuông tại B
hay DB là tiếp tuyến của (O)
a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
b: Xét ΔABC vuông tại C có CH là đường cao
nên \(AH\cdot AB=AC^2\left(1\right)\)
Xét ΔMAB vuông tại A có AC là đường cao
nên \(MC\cdot BC=AC^2\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=\left(2R\right)^2-R^2=3R^2\)
=>\(AC=R\sqrt{3}\)
b: Ta có: ΔOAC cân tại O
mà OE là đường trung tuyến
nên OE là phân giác của góc AOC
=>OF là phân giác của góc AOC
Xét ΔOCF và ΔOAF có
OC=OA
\(\widehat{COF}=\widehat{AOF}\)
OF chung
Do đó: ΔOCF=ΔOAF
=>\(\widehat{OAF}=\widehat{OCF}=90^0\)
=>FA là tiếp tuyến của (O)
a, ^BAC = 900 ( điểm thuộc đường tròn nhìn đường kính )
Theo Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=\sqrt{4R^2-R^2}=\sqrt{3}R\)
sinB = \(\frac{AC}{BC}=\frac{\sqrt{3}R}{2R}=\frac{\sqrt{3}}{2}\Rightarrow\)^B = 600
Vì ^C ; ^B phụ nhau => ^C = 900 - 600 = 300
b, Vì AH là đường đường cao với D thuộc AH
=> AD vuông BC (1)
Vì AD vuông BC => AH = HD (2)
Từ (1) ; (2) suy ra BC là đường trung trục AD
Vì BC là đường trung trực => AC = AD
=> tam giác ACD cân => ^CAD = ^CDA (3)
Xét tam giác AHC vuông tại H có ^HAC và ^C phụ nhau
=> ^HAC = 900 - 300 = 600 (4)
Từ (3) ; (4) suy ra tam giác ADC đều
c, ^ABC = 1/2 sđ cung AC ( góc nội tiếp chắn cung AC )
^CBD = 1/2 sđ cung CD ( góc nội tiếp chắn cung CD )
mà BC là đường trung trực nên AH = HD và BC vuông AD
=> C là điểm chính giữa cung AD => cung AC = cung CD (5)
Lại có ^AOC = 1/2 sđ cung AC ( góc ở tâm ) => ^AOC = ^ABC = 1/2 sđ cung AC
^COD = 1/2 sđ cung CD ( góc ở tâm ) => ^COD = ^CBD = 1/2 sđ cung CD
Lại có (5) suy ra ^AOC = ^COD
Xét tam giác OAE và tam giác ODE
OA = OD = R
OE _ chung
^AOE = ^EOD ( cmt )
Vậy tam giác OAE = tam giác ODE
=> ^OAE = ^ODE = 900
=> OA vuông AE
Vậy AE là tiếp tuyến của đường tròn (O)
d, bạn tính lần lượt EB ; CH ; BH ; EC xong nhân vào là ra nhé
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=\left(2R\right)^2-R^2=3R^2\)
=>\(AC=R\sqrt{3}\)
b:
Ta có: AB=AO=R
OA=AD=R=DO/2
Do đó: \(AB=OA=OD=\dfrac{DO}{2}\)
Xét ΔDBO có
BA là đường trung tuyến
\(BA=\dfrac{DO}{2}\)
Do đó: ΔDBO vuông tại B
=>DB\(\perp\)BO tại B
=>DB là tiếp tuyến của (O)