K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

Xét ΔABC vuông tại A có AH là đường cao

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay AH=16,8(cm)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

a) Xét ΔCAM có CA=CM(gt)

nên ΔCAM cân tại C(Định nghĩa tam giác cân)

hay \(\widehat{CAM}=\widehat{CMA}\)(hai góc ở đáy)(3)

b) Vì tia AM nằm giữa hai tia AB,AC

nên ta có: \(\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)

\(\Leftrightarrow\widehat{CAM}+\widehat{NAM}=90^0\)

hay \(\widehat{CAM}\) và \(\widehat{MAN}\) là hai góc phụ nhau(đpcm)

c) Ta có: tia AM nằm giữa hai tia AB,AC

nên \(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}\)

hay \(\widehat{CAM}+\widehat{BAM}=90^0\)(1)

Xét ΔAHM vuông tại H có 

\(\widehat{HAM}+\widehat{HMA}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{HAM}+\widehat{CMA}=90^0\)(2)

Từ (1), (2) và (3) suy ra \(\widehat{HAM}=\widehat{BAM}\)

mà tia AM nằm giữa hai tia AB,AH

nên AM là tia phân giác của \(\widehat{BAH}\)(đpcm)

d) Xét ΔAHM và ΔANM có 

AH=AN(gt)

\(\widehat{HAM}=\widehat{NAM}\)(cmt)

AM chung

Do đó: ΔAHM=ΔANM(c-g-c)

nên \(\widehat{AHM}=\widehat{ANM}\)(hai góc tương ứng)

mà \(\widehat{AHM}=90^0\)(AH\(\perp\)HM)

nên \(\widehat{ANM}=90^0\)

hay MN\(\perp\)AB(đpcm)

12 tháng 5 2023

a) Xét ΔABE vuông tại E & ΔNBE vuông tại E có:

- BE là cạnh chung, BN = BA (giả thuyết)

Suy ra ΔABE = ΔNBE (cạnh huyền - cạnh góc vuông)

b) Theo đề ta có BH vuông góc với AD và HA = HD

Suy ra BH là đường trung trực của AD

Suy ra BA = BD (vì B nằm trên đường trung trực của AD)

c) Trong ΔNAB có AH và BE là đường cao, đồng quy tại điểm K

Suy ra NK là đường cao của ΔNAB, hay NK vuông góc với AB

Mà AC cũng vuông góc với AB, suy ra NK // CA

13 tháng 5 2023

a. - Vì BE vuông góc với AN (gt)
=> tam giác ABE vuông tại E (tc)
     tam giác NBE vuông tại E (tc)
- Xét tam giác vuông ABE và tam giác vuông NBE, có:
    + Chung BE
    + BA = BN (gt)
=> tam giác vuông ABE = tam giác vuông NBE (Cạnh huyền - cạnh  góc vuông)

b. - Vì AH là đường cao của tam giác ABC (gt)
=> tam giác ABH vuông tại H
     tam giác DBH vuông tại H
- Xét tam giác vuông ABH và tam giác vuông DBH, có:
    + Chung BH
    + HA = HD (gt)
=> tam giác vuông ABH = tam giác vuông DBH (2 cạnh góc vuông)
    => BA = BD (2 cạnh tương ứng)

a: AH=15cm

\(AB=5\sqrt{34}\left(cm\right)\)

a: góc BAE+góc CAE=90 độ

góc BEA+góc HAE=90 độ

mà góc CAE=góc HAE
nên góc BAE=góc BEA

=>ΔBAE cân tại B

c: góc CAD+góc BAD=90 độ

góc CDA+góc HAD=90 độ

mà góc BAD=góc HAD

nên góc CAD=góc CDA

=>ΔCAD cân tại C