Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
AB=AD
=> tam giác BDA cân tại B
=> \(\widehat{BAD}=\widehat{BDA}\)(1)
Ta lại có: \(\widehat{BDA}+\widehat{HAD}=90^o,\widehat{BAD}+\widehat{DAE}=90^o\)(2)
Từ (1) và (2) ta suy ra: \(\widehat{HAD}=\widehat{DAE}\)
Xét tam giác HAD và tam giác EAD có:
\(\widehat{HAD}=\widehat{DAE}\)( chứng minh trên)
AH=AE (gt)
AD chung
Suy ra tam giác HAD và tam giác EAD
=> \(\widehat{AHD}=\widehat{ADE}\)
như vậy DE vuông AC
b) Ta có: BD+AH =BA+AE < BA+AC vì (AH=AE, BD=AB, E<AC)
Em xem lại đề bài nhé
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: góc MAD+góc BAD=90 độ
góc DAH+góc BDA=90độ
góc BAD=góc BDA
=>góc MAD=góc HAD
Xét ΔAHD và ΔAMD có
AH=AM
góc HAD=góc MAD
AD chung
=>ΔAHD=ΔAMD
=>góc AMD=90 độ
Xét ΔAMN vuông tại M và ΔAHC vuông tại H có
AM=AH
góc MAN chung
=>ΔAMN=ΔAHC
=>AN=AC
=>ΔANC cân tại A
Ta có:
BM=BA
=> Tam giác ABM cân tại B
=> \(\widehat{BAM}=\widehat{BMA}\)
mà \(\widehat{BAM}+\widehat{MAC}=90^o\)
=> \(\widehat{BMA}+\widehat{MAC}=90^o\)
mặt khác \(\widehat{HMA}+\widehat{HAM}=90^o\)
=> \(\widehat{HAM}=\widehat{MAC}\)(1)
Ta có: AH=AN (2)
AM chung (3)
=>Tam giác AHM=ANM
=> \(\widehat{ANM}=\widehat{AHM}=90^o\)
=> AC vuông MN
b) => Tam giác MNC vuông tại N có cạnh huyền MC
=> MC>NC
=> AN+BC=BM+MC+AN=AB+MC+AN>AB+NC+AN=AB+BC
=> dpcm
Cho tam giác ABC có vuông tại A AH vuông góc BC cmr AH+BC>AB +AC