Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)
b:
ΔAHB vuông tại H có HD là đường cao
nên \(HD\cdot AB=HA\cdot HB\)
ΔAHC vuông tại H có HE là đường cao
nên \(HE\cdot AC=HA\cdot HC\)
\(HD\cdot AB+HE\cdot AC\)
\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)
\(=HA\cdot BC=AB\cdot AC\)
c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
ΔABC vuông tại A có AM là trung tuyến
nên AM=MB=MC
\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)
\(=\widehat{DHA}+\widehat{MCA}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM vuông góc DE tại I
ΔADE vuông tại A có AI là đường cao
nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)
b: Xét ΔACB vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\left(1\right)\)
Xét ΔABK vuông tại A có AK là đường cao
nên \(AB^2=BK\cdot BD\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)
Gọi O là trung điểm của AK
ΔHAK vuông tại H có HO là đường trung tuyến
nên \(HO=OA=OK=\dfrac{AK}{2}\)
ΔKIA vuông tại I có IO là đường trung tuyến
nên \(IO=AO=KO=\dfrac{KA}{2}\)
=>IO=AO=KO=HO
=>A,I,H,K cùng thuộc (O)
a: góc HIB=1/2*sđ cung HB=90 độ
=>HI vuông góc AB
góc CKH=1/2*sđ cung CH=90 độ
=>HK vuông góc AC
góc AIH=góc AKH=góc KAI=90 độ
=>AIHK là hình chữ nhật
=>góc AIK=góc AHK=góc C
=>góc KIB+góc KCB=180 độ
=>KIBC nội tiếp
b: góc O1IK=góc O1IH+góc KIH
=góc O1HI+góc KAH
=góc HAC+góc HCA=90 độ
=>IK làtiếp tuyến của (O1)
góc O2KI=góc O2KH+góc IKH
=góc O2HK+góc IAH
=góc HAB+góc HBA=90 độ
=>IK là tiếp tuyến của (O2)
a: AH=15cm
\(AB=5\sqrt{34}\left(cm\right)\)