K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1)
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1)
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1)
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1)
Vậy A = n/(2n + 1)

13 tháng 8 2020

\(S=\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+...+\frac{1002.1004}{2005.2007}\)

\(\Rightarrow S=\frac{\left(2-1\right)\left(2+1\right)}{\left(2.2-1\right)\left(2.2+1\right)}+\frac{\left(3-1\right)\left(3+1\right)}{\left(3.2-1\right)\left(3.2+1\right)}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}\)

\(+..+\frac{\left(1003-1\right)\left(1003+1\right)}{\left(1003.2-1\right)\left(1003.2+1\right)}\)

\(\Rightarrow S=\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}\right)+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{3.2-1}-\frac{1}{3.2+1}\right)+...\)

\(+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)+...+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{1003.2-1}-\frac{1}{1003.2+1}\right)\)

\(\Rightarrow S=1002.\frac{1}{4}-1002.\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}+\frac{1}{3.2-1}-...-\frac{1}{1003.2+1}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{2007}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}.\frac{668}{2007}\)

\(\Rightarrow S=\frac{501}{2}-\frac{27889}{223}\)

\(\Rightarrow S=125,4372197\)

\(\)

4 tháng 4 2021

thx  you

25 tháng 8 2023

a) \(4^n=2^{n+1}\)

\(\Rightarrow2^{2n}=2^{n+1}\)

\(\Rightarrow2n=n+1\)

\(\Rightarrow n=1\)

b) \(16=\left(n-1\right)^4\)

\(\Rightarrow2^4=\left(n-1\right)^4\)

\(\Rightarrow n-1=2\)

\(\Rightarrow n=3\)

c) \(125=\left(2n+1\right)^3\)

\(\Rightarrow5^3=\left(2n+1\right)^3\)

\(\Rightarrow2n+1=5\)

\(\Rightarrow2n=4\)

\(\Rightarrow n=2\)

25 tháng 8 2023

a, 4n = 2n+1

    (22)n = 2n+1

     22n = 2n+1

      2n = n + 1

       2n - n = 1

         n = 1

b, 16 = (n-1)4

    24 = (n-1)4

    2 = n-1

    n = 3

c, 125 = (2n + 1)3

    53 = (2n+1)3

    5 = 2n + 1

     2n = 4

      n = 2

   

25 tháng 7 2023

CM: \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\) = \(\dfrac{n+1}{2n+1}\)

Ta có:

VT = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\)+....+\(\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\))

VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) +  \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+....+ \(\dfrac{1}{2n+1}\) - \(\dfrac{1}{2n+3}\))

VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{2n+3}\) )

VT = \(\dfrac{1}{2}\) \(\times\)\(\dfrac{2n+3}{2n+3}\) - \(\dfrac{1}{2n+3}\))

VT = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2n+2}{2n+3}\)

VT = \(\dfrac{1}{2}\)  \(\times\)\(\dfrac{2\times\left(n+1\right)}{2n+3}\)

VT = \(\dfrac{n+1}{2n+3}\)  = VP (đpcm)

30 tháng 12 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{X\left(X+2\right)}\)

\(\frac{1}{2}.\left(\frac{1}{1.3}+...+\frac{1}{X\left(X+2\right)}\right)\)\(\frac{16}{34}\)

\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{X}-\frac{1}{X+2}\right)\)

=15

30 tháng 12 2016

TA CÓ :    1/1.3 + 1/3.5 + 1/5.7 +... + 1/X(X+2) = 8/17

        =>    2/1.3 + 2/3.5 + 2/5.7 +... + 2/X(X+2) = 8/17 . 2 = 16/17

      <=>                       1 - 1/X+2                      = 16/17

                       X+2/X+2 - 1/X+2                       = 16/17

                      X+2 -1/X+2                                = 16/17

           => X+2 -1 =16 VÀ X+2 = 17

           => X = 15

5 tháng 3 2019

bn lên ngạng hoặc và xem câu hỏi tương tự nha!

Nhớ k mk đấy nha!

thanks nhìu!

OK..OK..OK

5 tháng 3 2019

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(2C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)

Ta có : 

\(\frac{2}{1.3}=1-\frac{1}{3}\)

\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)

...............................

\(\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{2n-1}-\frac{1}{2n+1}\)

\(\Rightarrow2C=1-\frac{1}{2n+1}=\frac{2n}{2n+1}\)

\(\Rightarrow C=\frac{n}{2n+1}\)