K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1)
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1)
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1)
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1)
Vậy A = n/(2n + 1)

31 tháng 1 2015

1.3+3.5+5.7+...+(2n+1).(2n+3)=(2n+1).(2n+2).(2n+3).(2n+4)

31 tháng 1 2015

(2n+2)(2n+2)(2n+3)(2n+4):12]+(n+1)

30 tháng 4 2022

b) \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)

\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(=\dfrac{1}{1}-\dfrac{1}{2023}\)

\(=\dfrac{2022}{2023}\)

30 tháng 4 2022

\(b)\)\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)

\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\)

\(2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(2A=\dfrac{1}{1}-\dfrac{1}{2023}\)

\(2A=\dfrac{2022}{2023}\)

\(A=\dfrac{2022}{2023}:2\)

\(A=\dfrac{1011}{2023}\)

17 tháng 3 2022

\(n=1\) không thỏa mãn.

17 tháng 3 2022

ab

 

hơi khó đó tick mình nha Hoàng Thu Hà