Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ đường cao AH vuông góc vs BC(H thuộc BC)
\(sinB=\dfrac{AH}{AB}\Rightarrow AH=66,7\\ sinC=\dfrac{AH}{AC}\Rightarrow AC=68\)
=>đáp án A
Ta có: AB=13 cm
BD=5 cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABD
AB^2=BD^2+AD^2
=> AD^2=AB^2-BD^2=13^2-5^2=144
=> AD=\(\sqrt{144}=12cm\)
Áp dụng định lí Py-ta-go vào tam giác vuông ADC
AC^2=AD^2+DC^2
=> DC^2=AC^2-AD^2=15^2-12^2=81
DC=\(\sqrt{81}=9cm\)
Câu 2 từ từ
Hình tự vẽ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Théo đề ta có: AB+AC=49
AB-AC=7
=> AB=(49+7)/2=28 cm
AC=28-7=21 cm
Áp dụng định lí Py ta go vào tam giác vuông ABC
BC^2=AC^2+AB^2=28^2+21^2=1225
BC=\(\sqrt{1225}=35cm\)
1) Áp dụng định lý Py-ta-go cho tam giác vuông ABD, ta có:
AD2 + BD2 = AB2 => AD2 + 52 = 132 => AD2 = 132 - 52 = 169 - 25 = 144 = 122 => AD = 12 cm
Áp dụng định lý Py-ta-go cho tam giác vuông ADC, ta có:
AD2 + DC2 = AC2 => 122 + DC2 = 152 => DC2 = 152 - 122 = 225 - 144 = 81 = 92 => CD = 9
2) AB = (49 + 7) : 2 = 28 cm
AC = 28 - 7 = 21 cm
Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:
AB2 + AC2 = BC2 = 282 + 212 = 352 => BC = 35 cm
Bài 2:
a: Xét ΔOHA vuông tại A và ΔOHB vuông tại B có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)
Do đó: ΔOHA=ΔOHB
Suy ra: HA=HB
hay ΔHAB cân tại H
b: Xét ΔOAB có
OH là đường cao
AD là đường cao
OH cắt AD tại C
Do đó: C là trực tâm của ΔOAB
Suy ra: BC\(\perp\)Ox
c: \(\widehat{HOA}=\dfrac{60^0}{2}=30^0\)
Xét ΔOHA vuông tại A có
\(\cos HOA=\dfrac{OA}{OH}\)
\(\Leftrightarrow OA=\dfrac{\sqrt{3}}{2}\cdot4=2\sqrt{3}\left(cm\right)\)
\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{13^2+15^2-14^2}{2.13.15}=\dfrac{33}{65}\)
\(\Rightarrow B\simeq59^029'\)