Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{13^2+15^2-14^2}{2.13.15}=\dfrac{33}{65}\)
\(\Rightarrow B\simeq59^029'\)
\(\overrightarrow{AC}=\left(2;-4\right);\overrightarrow{BC}=\left(6;3\right)\)
Vì 2.6+(-4).3=0 => AC_|_BC => tg ABC là tam giác vuông
\(p=\dfrac{a+b+c}{2}=24\)
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=96\)
\(S=\dfrac{1}{2}h_a.a\Rightarrow h_a=\dfrac{2S}{a}=16\)
\(R=\dfrac{abc}{4S}=10\)
\(r=\dfrac{S}{p}=4\)
\(m_c=\sqrt{\dfrac{2\left(a^2+b^2\right)-c^2}{4}}=10\)
\(R=\dfrac{BC}{2sin\widehat{BAC}}=\dfrac{a}{2sin120^0}=\dfrac{a\sqrt{3}}{3}\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^3-4y^2+4y=\sqrt{x+1}\left(y^2-5y+4+\sqrt{x+1}\right)\\2\sqrt{x^2-3x+3}+6x-7=y^2\left(x-1\right)^2+\left(y^2-1\right)\sqrt{3x-2}\end{matrix}\right.\)
Từ pt trên giải ra \(y=\sqrt{x+1}\) rồi thay vào dưới lại bị bí quá :((
Chọn D.
Áp dụng định lí cosin trong tam giác ta có:
Suy ra: A = 1170 49’
h xuất phát từ đỉnh nào bạn?
Tính ha á bạn