Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)
hay \(\widehat{ABC}=60^0\)
Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}\left(30^0< 60^0\right)\)
nên AB<AC
b) Xét ΔABD vuông tại A và ΔKBD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔABD=ΔKBD(cạnh huyền-góc nhọn)
Suy ra: BA=BK(Hai cạnh tương ứng)
Xét ΔBAK có BA=BK(cmt)
nên ΔBAK cân tại B(ĐỊnh nghĩa tam giác cân)
mà \(\widehat{ABK}=60^0\)
nên ΔABK đều(Dấu hiệu nhận biết tam giác đều)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó