K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

a)BD là tia phân giác =>AD/DC=AB/BC(tính chất đường phân giác)

CE là tia phân giác=>AE/EB=AC/BC(tính chất dg pg 

mà AB=AC nên=> AD/DC=AE/EB=>ED//BC.

b)BD là tia phân giác =>AD/DC=AB/AC=>AD/AB=DC/CB=(AD+DC)/(BC+AB)=b/a+b=>AD=b^2/a+b.

DE//BC=>AD/AC=DE/BC=>DE=AD/AC*BC=b/(a+b)*a=ab/(a+b)

=>1/DE=(a+b)/ab=1/a+1/b

2 tháng 5 2019

Cho mình hỏi bài toán này ở sách nào vậy ?

23 tháng 5 2018

Hình bạn tự vẽ nhá !!

Xét \(\Delta BEC\) và \(\Delta CDB\) có :

\(\widehat{EBC}=\widehat{DCB}\left(gt\right)\)\(BC\)chung; \(\widehat{DBC}=\widehat{ECB}\left(=\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\right)\)

\(\Rightarrow\Delta BEC=\Delta CDB\) \(\left(g-c-g\right)\)\(\Rightarrow BE=CD\)

Do đó \(\frac{BE}{AB}=\frac{CD}{AC}\) theo định lý Ta lét đảo \(\Rightarrow DE//BC\)

\(\Rightarrow\widehat{DBC}=\widehat{EDB}=\widehat{EBD}\) (SLT)

\(\Rightarrow\Delta BED\) cân tại \(E\) \(\Rightarrow DE=BE=c\) 

Do DE//BC ta có : \(\frac{DE}{BC}=\frac{AE}{AB}\) (ĐL Talét) (1)  Và \(\frac{DE}{AB}=\frac{BE}{AB}\) (2)

Cộng vế với vế của (1) và (2) ta được : \(\frac{DE}{BC}+\frac{DE}{AB}=\frac{AE}{AB}+\frac{BE}{AB}=\frac{AE+BE}{AB}=\frac{AB}{AB}=1\)

\(\Leftrightarrow DE\left(\frac{1}{AB}+\frac{1}{BC}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{BC}=\frac{1}{DE}\)

Hay \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)  (ĐPCM)

22 tháng 5 2018

TRẢ LỜI HAY KHÔNG CŨNG KỆ THI XONG RÙI

14 tháng 3 2022

A B C D E F

a)Xét  \(\Delta ABC\) vuông tại A có :

    \(BC^2=AB^2+AC^2\) (định lý pytago)

    \(225=AB^2+144\)

\(\Rightarrow AB^2=225-144\)

     \(AB^2=81\)

     AB = 9cm

b)Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E có :

   \(\widehat{ABD}=\widehat{EBD}\)

   BD chung

=>\(\Delta ABD\) =\(\Delta EBD\) (ch-gn)

=>\(\widehat{ADB}=\widehat{EDB}\)

=> DB là tia phân giác của \(\widehat{ADE}\)

c)M mình ko biết ở đâu nên mình ko làm nhé

Vì EF // BD nên \(\widehat{CFE}=\widehat{CDB}\)

Có : \(\widehat{CFE}+\widehat{EFD}=180^o\)

        \(\widehat{CDB}+\widehat{BDA}=180^o\)

mà \(\widehat{CFE}=\widehat{CDB}\)

=> \(\widehat{EFD}=\widehat{BDA}\)

mà \(\widehat{BDA}=\widehat{BDE}=\widehat{DEF}\)

=> \(\widehat{EFD}=\widehat{DEF}\) => \(\Delta DEF\) cân tại D

d) Có : \(AB=BE\) (\(\Delta ABD\) =\(\Delta EBD\))

=> \(\Delta ABE\) cân tại B

mà BD là đường phân giác của góc B 

=> BD là đường trung trực của AE

AH
Akai Haruma
Giáo viên
23 tháng 1 2022

Lời giải:

Xét tam giác $ABD$ và $ACE$ có:

$\widehat{A}$ chung 

$AB=AC$ (do tam giác $ABC$ cân tại $A$)

$\widehat{ABD}=\frac{1}{2}\widehat{B}=\frac{1}{2}\widehat{C}=\widehat{ACE}$ (do tam giác $ABC$ cân tại $A$)

$\Rightarrow \triangle ABD=\triangle ACE$ (g.c.g)

$\Rightarrow AD=AE$

Mà $AB=AC$ nên $\frac{AE}{AB}=\frac{AD}{AC}$

$\Rightarrow DE\parallel BC$ (Talet đảo)

Áp dụng định lý Talet:

$\frac{DE}{BC}=\frac{AD}{AC}$

Theo tính chất tia phân giác thì:

$\frac{AD}{DC}=\frac{AB}{BC}=\frac{b}{a}$
$\Rightarrow \frac{AD}{AC}=\frac{b}{a+b}$
Do đó: $\frac{DE}{BC}=\frac{b}{a+b}$

$\Rightarrow DE=BC.\frac{b}{a+b}=\frac{ab}{a+b}$ 

AH
Akai Haruma
Giáo viên
23 tháng 1 2022

Hình vẽ:

15 tháng 5 2017

b/

Xét \(\Delta ABD\)\(\Delta EBC\) có:

\(\widehat{A}=\widehat{E}=90^o\) ( vì \(\Delta ABC\) vuông tại A và \(CE\perp BD\) tại E)

\(\widehat{ABD}=\widehat{EBC}\) ( vì BD là tia phân giác của \(\widehat{ABC}\) )

\(\Rightarrow\Delta ABD~\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{BD}{BC}=\dfrac{AD}{EC}\) ( 2 cặp cạnh tương ứng tỉ lệ)

\(\Rightarrow BD.EC=BC.AD\)

c/ Vì \(\Delta ABD~\Delta EBC\left(cmt\right)\)

\(\Rightarrow\widehat{ADB}=\widehat{ECB}\)

\(\widehat{ADB}=\widehat{EDC}\) ( 2 góc đối đỉnh)

\(\Rightarrow\widehat{EDC}=\widehat{ECB}\)

Xét \(\Delta ECD\)\(\Delta EBC\) có:

\(\widehat{E}\) là góc chung

\(\widehat{EDC}=\widehat{ECB}\left(cmt\right)\)

\(\Rightarrow\Delta ECD~\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{EC}{EB}=\dfrac{CD}{BC}\) ( 2 cặp cạnh tương ứng tỉ lệ)

d/ Xét \(\Delta EBC\) vuông tại E, đường cao EH ứng với cạnh BC

Áp dụng hệ thức lượng trong tam giác vuông ta có:

\(EC^2=CH.CB\) (3)

\(\Delta ECD~\Delta EBC\left(cmt\right)\)

\(\Rightarrow\dfrac{ED}{EC}=\dfrac{EC}{EB}\) ( 2 cặp cạnh tương ứng tỉ lệ)

\(\Rightarrow EC.EC=ED.EB\)

\(\Leftrightarrow EC^2=ED.EB\left(4\right)\)

Từ (3) và (4) \(\Rightarrow CH.CB=ED.EB\)

31 tháng 5 2022

đỉnh thế

 

26 tháng 2 2020

help me

21 tháng 4 2021

a, xét tam giác abc vuông tại a có

ab^2 + ac^2= bc^2

9^2+12^2=bc^2

144=bc^2

BC=12cm

b,có gì mái mình giải tiếp giờ đi học rồi