Dùng phương pháp xét giá trị riêng :
M = a(b+c-a)2 + b(c+a-b)2 + c(a+b-c)2 + (a+b-c)(b+c-a)(c+a-b)
Mình sẽ tick cho ai giải nhanh và đúng nhất. hứa đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a(b+c-a)^2+ b(c+a-b)^2 + c(a+b-c)^2 + (a+b-c)(b+c-a)(c+a-b)}\) Phương pháp xét giá trị riêng
Lời giải:
Đặt đa thức đã cho là $P(a,b,c)$
Ta có:
$P(0,b,c)=b(c-b)^2+c(b-c)^2+(b-c)(b+c)(c-b)$
$=(b+c)(c-b)^2-(b+c)(b-c)^2=0$
$P(a,0,c)=a(c-a)^2+c(a-c)^2+(a-c)(c-a)(a+c)=0$
$P(a,b,0)=a(b-a)^2+b(a-b)^2+(a+b)(b-a)(a-b)=0$
Điều đó nghĩa là $a,b,c$ là nghiệm của $P(a,b,c)$
Do đó:
$P(a,b,c)=Aabc$
Thay $a=b=1, c=2$ ta có:
$8=2A\Rightarrow A=4$
Vậy $P=4abc$
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5.\)
=> a=10; b=15; c=20
\(\text{Ta có :}\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau , ta có :}\)
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\\\frac{2b}{6}=5\\\frac{3c}{12}=5\end{cases}\Rightarrow}\hept{\begin{cases}a=10\\b=15\\c=20\end{cases}.}\text{Vậy a = 10; b = 15 ; c = 20}\)
Chúc bạn hok tốt :>