K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 7 2021

Lời giải:

Đặt đa thức đã cho là $P(a,b,c)$

Ta có:
$P(0,b,c)=b(c-b)^2+c(b-c)^2+(b-c)(b+c)(c-b)$

$=(b+c)(c-b)^2-(b+c)(b-c)^2=0$

$P(a,0,c)=a(c-a)^2+c(a-c)^2+(a-c)(c-a)(a+c)=0$

$P(a,b,0)=a(b-a)^2+b(a-b)^2+(a+b)(b-a)(a-b)=0$

Điều đó nghĩa là $a,b,c$ là nghiệm của $P(a,b,c)$

Do đó: 
$P(a,b,c)=Aabc$

Thay $a=b=1, c=2$ ta có:

$8=2A\Rightarrow A=4$

Vậy $P=4abc$

 

14 tháng 1 2020

\(VT-VP=\Sigma_{cyc}\frac{2a+b+c}{a^2b\left(a+b+c\right)}\left(a-b\right)^2\ge0\)

hay \(\frac{a}{c^2}+\frac{1}{a}\ge\frac{2}{c}\)\(\Leftrightarrow\)\(\frac{a}{c^2}\ge\frac{2}{c}-\frac{1}{a}\)\(\Rightarrow\)\(VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

"=" \(\Leftrightarrow\)\(a=b=c\)

\(\left(a+b+c\right)^5-a^5-b^5-c^5\)

\(=5\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)

12 tháng 8 2021

:((( sao k có lời giải vậy bn...?

1 tháng 6 2018

a^3(c−b^2)+b^3(a−c^2)+c^3(b−a^2)+abc(abc−1)

=a^3c−a^3b^2+b^3(a−c^2)+bc^3−a^2c^3+a^2b^2c^2−abc

=(a^3c−a^2c^3)+b^3(a−c^2)−(a^3b^2−a^2b^2c^2)+(bc^3−abc)

=a^2c(a−c^2)+b^3(a−c^2)−a^2b^2(a−c^2)−bc(a−c^2)

=(a^2c+b^3−a^2b^2−bc)(a−c2)

=[c(a^2−b)−b^2(a^2−b)](a−c^2)=(a^2-b)(c-b^2)(a-c^2)

1 tháng 6 2018

Thanks