K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(a+b+c\right)^5-a^5-b^5-c^5\)

\(=5\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)

12 tháng 8 2021

:((( sao k có lời giải vậy bn...?

21 tháng 7 2021

A= (a+b+c)3-a3-b3-c3

  = a3+b3+c3+3(a+b)(a+c)(b+c)-a3-b3-c3

  = 3(a+b)(a+c)(b+c)

30 tháng 10 2017

a) \(=x^2-2x-4x+8\)

\(=x\left(x-2\right)-4\left(x-2\right)\)

\(=\left(x-2\right)\left(x-4\right)\)

c) \(=x^3-x-6x-6\)

\(=x\left(x^2-1\right)-6\left(x+1\right)\)

\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)

\(=x\left(x+1\right)\left(x-1-6\right)\)

\(=x\left(x+1\right)\left(x-7\right)\)

20 tháng 11 2018

Mình không biết

20 tháng 11 2018

ko bt thì  ko nói nha mình đang cần gấp lém xin đừng trêu

13 tháng 9 2021

dấu ^ là mũ nha mn

 

AH
Akai Haruma
Giáo viên
15 tháng 7 2021

Lời giải:

Đặt đa thức đã cho là $P(a,b,c)$

Ta có:
$P(0,b,c)=b(c-b)^2+c(b-c)^2+(b-c)(b+c)(c-b)$

$=(b+c)(c-b)^2-(b+c)(b-c)^2=0$

$P(a,0,c)=a(c-a)^2+c(a-c)^2+(a-c)(c-a)(a+c)=0$

$P(a,b,0)=a(b-a)^2+b(a-b)^2+(a+b)(b-a)(a-b)=0$

Điều đó nghĩa là $a,b,c$ là nghiệm của $P(a,b,c)$

Do đó: 
$P(a,b,c)=Aabc$

Thay $a=b=1, c=2$ ta có:

$8=2A\Rightarrow A=4$

Vậy $P=4abc$