Biết 1+1=2 ; 1-1=0
Đố : Nam có 3 viên kẹo , Tèo lấy 2 viên . Hỏi tính khối lượng trái đất ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
1 + 1 = 2 vì:
theo bảng số thì đầu tiên là 1 sau đến 2 rồi 3....v.v.. mỗi số liền kề hơn kém nhau 1
nên 1 + 1 = 2 cũng như 2 + 1 = 3, cứ cộng một số nào đó vs 1 thì sẽ ra số ở trước nó
Đặt A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}...+\dfrac{1}{2^x}\) suy ra 2A= \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{x-1}}\)
2A-A=2= \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{x-1}}\)-\(1-\dfrac{1}{2}-\dfrac{1}{2^2}...-\dfrac{1}{2^x}\)
A= \(2-\dfrac{1}{2^x}\)
Khi đó: \(\dfrac{1}{1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^x}}=\dfrac{1}{2-\dfrac{1}{2^x}}=\dfrac{2^x}{127}\) suy ra: 127=\(2^{x+1}-1\)=>127+1=128=\(2^7\)=\(2^{x+1}\)=>x+1=7=>x=6
Vậy x=6
\(u_n=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{2}\left[\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n-1}\right)-\left(\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n+1}\right)\right]\)
\(=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{2n+1}{n\left(n+1\right)}\right)=\dfrac{3n^2+n-1}{4n\left(n+1\right)}\)
\(\Rightarrow limu_n=lim\dfrac{3n^2+n-1}{4n^2+4n}=lim\dfrac{3+\dfrac{1}{n}+\dfrac{1}{n^2}}{4+\dfrac{4}{n}}=\dfrac{3}{4}\)
\(\dfrac{1}{n^2-1}=\dfrac{1}{2}\cdot\dfrac{2}{\left(n-1\right)\left(n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)
Khi đó:
\(u_n=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}+\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{3n^2+3n+2}{4n\left(n+1\right)}\)
\(lim_{u_n}=lim\dfrac{3n^2+3n+2}{4n\left(n+1\right)}=lim\dfrac{3+\dfrac{3}{n}+\dfrac{2}{n^2}}{4\left(1+\dfrac{1}{n}\right)}=\dfrac{3}{4}\)
a. Phân tử oxi, biết trong phân tử có 2 O
=> \(O_2\)
b. Bạc clorua, biết trong phân tử có 1 Ag, 1 Cl
=> \(AgCl\)
c. Magie sunfat, biết trong phân tử có 1 Mg, 1 S, 4 O
=>\(MgSO_4\)
d. Axit cacbonic biết trong phân tử có 2 H, 1 C, 3 O
=> \(H_2CO_3\)
SAI MÔN KÌA