Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)
\(\Rightarrow\)\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
\(\Rightarrow\)\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow\)\(A=2-\frac{1}{2^{100}}\)
\(B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(\Rightarrow\)\(3B=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\)
\(\Rightarrow\)\(3B-B=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow\)\(2B=3-\frac{1}{3^{100}}\)
\(\Rightarrow\)\(B=\frac{3-\frac{1}{3^{100}}}{2}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}\)
\(\Rightarrow2A=2.\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}\right)\)
\(=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}\)
\(\Rightarrow2A-A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}\right)\)
\(\Rightarrow A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2006}}\)
\(=2-\frac{1}{2^{2006}}\)