K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy pt vô nghiệm

\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)

\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

14 tháng 10 2021

a) \(\sqrt{x-5}=\sqrt{3-x}\)

\(\left(\sqrt{x-5}\right)^2=\left(\sqrt{3-x}\right)^2\)

\(x-5=3-x\)

\(x=4\)

b) \(\sqrt{4-5x}=\sqrt{2-5x}\)

\(\left(\sqrt{4-5x}\right)^2=\left(\sqrt{2-5x}\right)^2\)

\(4-5x=2-5x\)

\(2=0\) (Vô lí)

8 tháng 9 2023

Các đơn thức là :

\(\left(1-\dfrac{1}{\sqrt[]{3}}\right)x^2;x^2.\dfrac{7}{2}\)

27 tháng 9 2021

\(\left(x^2-x-6\right)\left(x^2-5\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

Mà \(x\in Q\)

\(\Rightarrow x=\left\{-2;3\right\}\)

27 tháng 9 2021

Pt\(\Leftrightarrow\)\(\left[{}\begin{matrix}x^2-x-6=0\\x^2-5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}3\\-2\\-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\)

   Đáp án A

NV
3 tháng 3 2021

Hiển nhiên là cách đầu sai rồi em

Khi đến \(\lim x^2\left(1-1\right)=+\infty.0\) là 1 dạng vô định khác, đâu thể kết luận nó bằng 0 được

3 tháng 3 2021

em cảm ơn ạ =)))

25 tháng 12 2017

ĐKXĐ: \(x\ge2\)
Đặt \(\sqrt{x+1}=a\)\(\sqrt{x-2}=b\) 
Ta có hpt:
\(\hept{\begin{cases}\left(a-b\right)\left(1+ab\right)=3\\a^2-b^2=3\end{cases}}\)\(\Rightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\)

                                                           \(\Rightarrow a+b=1+ab\)(Do a-b không thể bằng 0)
                                                          \(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
                                                          \(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\) 
                                                           \(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktmđkxđ\right)\\x=3\left(tmđkxđ\right)\end{cases}}}\Rightarrow x=3\)
Vậy nghiệm của pt trên là x=3


 

NV
15 tháng 12 2020

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)