K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

\(\left(x^2-x-6\right)\left(x^2-5\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

Mà \(x\in Q\)

\(\Rightarrow x=\left\{-2;3\right\}\)

27 tháng 9 2021

Pt\(\Leftrightarrow\)\(\left[{}\begin{matrix}x^2-x-6=0\\x^2-5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}3\\-2\\-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\)

   Đáp án A

NV
7 tháng 3 2020

1.

a/ ĐKXĐ: \(-1\le x\le5\)

\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)

\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)

\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)

- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge3\) cả 2 vế ko âm, bình phương:

\(x^2-6x+9\le-4x^2+16x+20\)

\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)

\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)

Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)

NV
7 tháng 3 2020

1b/

Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)

\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)

BPT trở thành:

\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)

\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)

NV
22 tháng 11 2019

a/ ĐKXĐ: \(0\le x\le1\)

Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow\sqrt{x-x^2}=\frac{a^2-1}{2}\)

Ta được:

\(1+\frac{a^2-1}{3}=a\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x\left(1-x\right)}=0\\2\sqrt{x-x^2}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\left(1-x\right)=0\\-4x^2+4x-9=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b/ ĐKXĐ: ...

Đặt \(\sqrt{x+5}=a\ge0\Rightarrow a^2-x=5\)

\(x^2+a=a^2-x\)

\(\Leftrightarrow x^2-a^2+a+x=0\)

\(\Leftrightarrow\left(a+x\right)\left(x-a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=-x\left(x\le0\right)\\\sqrt{x+5}=x+1\left(x\ge-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2\left(x\le0\right)\\x+5=x^2+2x+1\left(x\ge-1\right)\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
22 tháng 11 2019

c/ ĐKXĐ: \(2\le x\le5\)

\(\Leftrightarrow\sqrt{3x-3}=\sqrt{2x-4}+\sqrt{5-x}\)

\(\Leftrightarrow3x-3=x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow x-2=\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow\left(x-2\right)^2=\left(2x-4\right)\left(5-x\right)\)

\(\Leftrightarrow\left(x-2\right)\left(3x-12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

8 tháng 4 2018

\(1\))\(x^2+5x+8=3\sqrt{x^3+5x^2+7x+6}\left(1\right)\\ĐK:x\ge-\dfrac{3}{2} \\ \left(1\right)\Leftrightarrow x^2+5x+8=3\sqrt{\left(2x+3\right)\left(x^2+x+2\right)}\left(2\right)\)

Đặt \(b=\sqrt{2x+3};a=\sqrt{x^2+x+2}\)

\(\left(2\right)\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)\(\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1\pm\sqrt{5}}{2}\\x=\dfrac{7\pm\sqrt{89}}{2}\end{matrix}\right.\)

8 tháng 4 2018

4)\(ĐK:x\ge-\dfrac{1}{3}\)

\(x^2-7x+2+2\sqrt{3x+1}=0\\ \Leftrightarrow x^2-7x+6+2\sqrt{3x+1}-4=0\\ \Leftrightarrow\left(x-1\right)\left(x-6\right)+\dfrac{12\left(x-1\right)}{2\sqrt{3x+1}+4}=0\\ \Leftrightarrow\left(x-1\right)\left(x-6+\dfrac{12}{2\sqrt{3x+1}+4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x-6+\dfrac{12}{2\sqrt{3x+1}+4}=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(x-5\right)+\dfrac{6}{\sqrt{3x+1}+2}-1=0\\ \Leftrightarrow\left(x-5\right)+\dfrac{4-\sqrt{3x+1}}{\sqrt{3x+1}+2}=0\\ \Leftrightarrow\left(x-5\right)-\dfrac{3\left(x-5\right)}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}=0\\ \Leftrightarrow\left(x-5\right)\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)=3\\ \Leftrightarrow3x+1+6\sqrt{3x+1}+8=3\\ \Leftrightarrow x+2\sqrt{3x+1}+2=0\\ \Leftrightarrow2\sqrt{3x+1}=-x-2\ge0\Leftrightarrow x\le-2\)

Vậy pt có 2 nghiệm là x=1 và x=5

NV
24 tháng 11 2019

a/ ĐKXĐ: \(0\le x\le1\)

Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow2\sqrt{x-x^2}=a^2-1\)

\(\Rightarrow1+\frac{a^2-1}{2}=a\Leftrightarrow a^2-2a+1=0\Rightarrow a=1\)

\(\Rightarrow\sqrt{x}+\sqrt{1-x}=1\)

\(\Leftrightarrow1+2\sqrt{x-x^2}=1\)

\(\Rightarrow x-x^2=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b/ Đặt \(\sqrt{x+5}=a\ge0\Rightarrow a^2-x=5\)

\(x^2+a=a^2-x\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+x+a=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\Rightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+5}=-x\left(x\le0\right)\\\sqrt{x+5}=x+1\left(x\ge-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2\\x+5=x^2+2x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-5=0\\x^2+x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{21}}{2}\left(l\right)\\x=\frac{1-\sqrt{21}}{2}\\x=\frac{-1+\sqrt{17}}{2}\\x=\frac{-1-\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)

NV
3 tháng 3 2020

ĐKXĐ: \(x\ge-3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a>0\\\sqrt{x+3}=b\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2-x-5=2a^2-3b^2\\2x^2+x+1=2a^2-b^2\end{matrix}\right.\)

\(\Rightarrow\left(2a^2-3b^2\right)a+\left(2a^2-b^2\right)b\)

\(\Leftrightarrow2a^3+2a^2b-3ab^2-b^3=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a^2+4ab+b^2\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow x^2+x+2=x+3\Leftrightarrow x^2=1\)