K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2020

ĐKXĐ: \(x\ge-3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a>0\\\sqrt{x+3}=b\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2-x-5=2a^2-3b^2\\2x^2+x+1=2a^2-b^2\end{matrix}\right.\)

\(\Rightarrow\left(2a^2-3b^2\right)a+\left(2a^2-b^2\right)b\)

\(\Leftrightarrow2a^3+2a^2b-3ab^2-b^3=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a^2+4ab+b^2\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow x^2+x+2=x+3\Leftrightarrow x^2=1\)

5 tháng 3 2019

1) Phương trình đã cho tương đương

\(\Leftrightarrow\left(x-2\right)\left(3\sqrt{x^2+1}-x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\frac{3}{4}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Bài 1. ĐKXĐ:.........

PT \(\Leftrightarrow (-x^2+3x+3)+4\sqrt{-x^2+2x+3}=12\)

Đặt \(\sqrt{-x^2+2x+3}=t(t\geq 0)\) thì PT trở thành:

\(t^2+4t=12\)

\(\Leftrightarrow (t-2)(t+6)=0\Rightarrow \left[\begin{matrix} t=2\\ t=-6\end{matrix}\right.\)

Vì $t\geq 0$ nên $t=2$

$\Rightarrow -x^2+2x+3=t^2=4$

$\Leftrightarrow -x^2+2x-1=0$

$\Leftrightarrow -(x-1)^2=0\Leftrightarrow x=1$ (thỏa mãn)

Vậy......

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Lời giải:

Ta thấy:

\(|x+2|\geq 0(1), \forall x\in\mathbb{R}\)

\(|x-2|+1\geq 1>0, \forall x\in\mathbb{R}\Rightarrow \frac{2}{|x-2|+1}>0(2)\)

Từ \((1);(2)\Rightarrow |x+2|+\frac{2}{|x-2|+1}>0\) với mọi $x\in\mathbb{R}$

Do đó PT đã cho vô nghiệm.

NV
11 tháng 11 2019

a/ \(x^2-2x-3=-m\)

Đặt \(f\left(x\right)=x^2-2x-3\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)

\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)

b/ \(-x^2+2mx-m+1=0\)

\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

Để pt có 2 nghiệm đều âm

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

NV
11 tháng 11 2019

c/ \(f\left(x\right)=2x^2-x-1=m\)

Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)

\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)

\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)

d/ \(f\left(x\right)=x^2-2x+1=m\)

Xét \(f\left(x\right)\) trên \((0;2]\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)

Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)

\(x^2+4x+3=x-m\)

\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)

Xét hàm \(f\left(x\right)\)

\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)

Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)

Mặt khác \(x^2+3x+m+3=0\)

Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:

\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)

Từ (1) và (2) suy ra ko tồn tại m thỏa mãn

NV
7 tháng 3 2020

1.

a/ ĐKXĐ: \(-1\le x\le5\)

\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)

\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)

\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)

- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge3\) cả 2 vế ko âm, bình phương:

\(x^2-6x+9\le-4x^2+16x+20\)

\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)

\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)

Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)

NV
7 tháng 3 2020

1b/

Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)

\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)

BPT trở thành:

\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)

\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)