\(\sqrt{x^2+2}\))x=1+2\(\sqrt{x^2+2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

a) ĐK: \(x\inℝ\).

Đặt \(\sqrt{x^2-3x+4}=a>0\)

\(x^2-5x+4-\left(2x-1\right)a=0\)

\(\Leftrightarrow a^2-\left(2x-1\right)a-2x=0\)

\(\Leftrightarrow-\left(a+1\right)\left(2x-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-1\left(L\right)\\2x=a\left(C\right)\end{cases}}\)

Xét \(2x=a\Leftrightarrow\hept{\begin{cases}x>0\\a^2=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\-3x^2-3x+4=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{57}}{6}\) ( đã loại 1 nghiệm vì ko t/m x> 0)

P/s: em ko chắc:v

18 tháng 8 2017

\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)

\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)

\(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)

\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)

\(\Rightarrow m\ge4\) thì pt trên có no

18 tháng 8 2017

cảm ơn bạn.

27 tháng 6 2017

1) Đk: x khác -3

x khác 1

Biểu thức \(\Leftrightarrow\dfrac{x^2-x}{x^2+2x-3}+\dfrac{2x+6}{x^2+2x-3}=\dfrac{12}{x^2+2x-3}\)

\(\Leftrightarrow x^2-x+2x+6=12\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

kl: x thuộc {-3;2}

27 tháng 6 2017

@Nguyễn Thị Giang Thanh

NV
8 tháng 8 2020

5.

ĐKXĐ: \(-\frac{1}{2}\le x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}-x+\frac{1}{2}+x+2\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=1\)

\(\Leftrightarrow\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

6.

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x^2-1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}-\sqrt{x-1}-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\left(vn\right)\end{matrix}\right.\)

NV
8 tháng 8 2020

2.

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Leftrightarrow2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-x+1\\x+1=4x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-3=0\\4x^2-5x+3=0\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
6 tháng 8 2020

7/

ĐKXĐ: \(-3\le x\le\frac{2}{3}\)

\(\Leftrightarrow2x+8\sqrt{x+3}+4\sqrt{3-2x}=2\)

\(\Leftrightarrow8\sqrt{x+3}+4\sqrt{3-2x}-\left(3-2x\right)+1=0\)

\(\Leftrightarrow8\sqrt{x+3}+\sqrt{3-2x}\left(4-\sqrt{3-2x}\right)+1=0\)

Do \(x\ge-3\Rightarrow3-2x\le9\Rightarrow\sqrt{3-2x}\le3\)

\(\Rightarrow4-\sqrt{3-2x}>0\)

\(\Rightarrow VT>0\)

Phương trình vô nghiệm (bạn coi lại đề)

NV
6 tháng 8 2020

5/

\(\Leftrightarrow8x^2-3x+6-4x\sqrt{3x^2+x+2}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{3x^2+x+2}+3x^2+x+2\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{3x^2+x+2}\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{3x^2+x+2}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)

6/

ĐKXĐ: ....

\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\)

6 tháng 7 2016

a) \(x^2-6x+26=6\sqrt{2x+1}\) (ĐKXĐ : \(x\ge-\frac{1}{2}\) )

\(\Leftrightarrow x^2-6x+26-6\sqrt{2x+1}=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)-\left(6\sqrt{2x+1}-18\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-6\left(\sqrt{2x+1}-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-6\left(\frac{2x+1-9}{\sqrt{2x+1}+3}\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-\frac{12\left(x-4\right)}{\sqrt{2x+1}+3}=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2-\frac{12}{\sqrt{2x+1}+3}\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-2-\frac{12}{\sqrt{2x+1}+3}=0\end{array}\right.\)

Với x - 4 = 0 => x = 4 (TMĐK)

Với \(x-2-\frac{12}{\sqrt{2x+1}+3}=0\Rightarrow x=4\left(TM\right)\)

Vậy phương trình có nghiệm x = 4

b) \(x+\sqrt{2x-1}=3+\sqrt{x+2}\) ( ĐKXĐ : \(x\ge\frac{1}{2}\))

\(x+\sqrt{2x-1}-3-\sqrt{x+2}=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}-\sqrt{5}\right)-\left(\sqrt{x+2}-\sqrt{5}\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\frac{2x-1-5}{\sqrt{2x-1}+\sqrt{5}}-\frac{x+2-5}{\sqrt{x+2}+\sqrt{5}}+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x-1}+\sqrt{5}}-\frac{1}{\sqrt{x+2}+\sqrt{5}}+1\right)=0\)

Vì \(x\ge\frac{1}{2}\) nên  \(\frac{2}{\sqrt{2x-1}+\sqrt{5}}-\frac{1}{\sqrt{x+2}+\sqrt{5}}+1>0\) . Do đó x-3 = 0 => x = 3 (TMĐK)

Vậy phương trình có nghiệm x = 3