K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án:

P=±36

Giải thích các bước giải:

Ta có:

x2+y2+z2=16xy−yz+zx=−10⇒(x2+y2+z2)−2.(xy−yz+zx)=16−2.(−10)⇔x2+y2+z2−2xy+2yz−2zx=36⇔(x2−2xy+y2)+z2+2yz−2zx=36⇔(x−y)2+2z(y−x)+z2=36⇔(x−y)2−2.(x−y).z+z2=36⇔(x−y−z)2=36⇔x−y−z=±6P=x3−y3−z3−3xyz=(x3−3x2y+3xy2−y3)−z3+3x2y−3xy2−3xyz=(x−y)3−z3+3x2y−3xy2−3xyz=[(x−y)−z].[(x−y)2+(x−y).z+z2]+3xy(x−y−z)=(x−y−z).(x2−2xy+y2+xz−yz+z2+3xy)=(x−y−z).(x2+y2+z2+xy−yz+zx)Trường hợp 1: x−y−z=6⇒P=6.(16+(−10))=36Trường hợp 2: x−y−z=−6⇒P=(−6).(16+(−10))=−36

Vậy P=±36.

14 tháng 7 2021

MÌNH CHỈ BIẾT LÀM B7 THÔI NHA

P= 811^3+ 812^3+815^3+3.811.812.(-815)=  31694

K ĐÚNG HỘ TỚ NHA

9 tháng 9 2017

26 tháng 12 2017

https://goo.gl/BjYiDy

NV
13 tháng 4 2020

\(VT=\left(x^4\right)^2+\left(y^4\right)^2+\left(z^4\right)^2\ge\frac{1}{3}\left(x^4+y^4+z^4\right)^2\)

\(VT\ge\frac{1}{27}\left(x^2+y^2+z^2\right)^4=\frac{1}{27}\left(x^2+y^2+z^2\right)^3\left(x^2+y^2+z^2\right)\)

\(VT\ge\frac{1}{27}\left(3\sqrt[3]{x^2y^2z^2}\right)^3\left(xy+yz+zx\right)=x^2y^2z^2\left(xy+yz+zx\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

4 tháng 11 2018

từ giả thiết : xy + yz = 8 ; yz + zx = 9 ; zx + xy = 5

=> xy + yz + zx = 11

=> xy = 2 ; yz = 6 ; zx = 3

=>( xyz)2 = 36     =>  xyz =  \(\pm\)6

+ nếu xyz = 6 thì :        x = 1 ; y = 2; z = 3

+ nếu xyz = -6 thì :       x = -1 ; y = -2 ; z = -3

4 tháng 11 2018

\(xy+yz=8;yz+zx=9;zx+xy=5\)

\(\Rightarrow xy+yz+yz+zx+zx+xy=8+9+5\)

\(\Leftrightarrow2xy+2yz+2xz=22\)

\(\Leftrightarrow2\left(xy+yz+xz\right)=22\)

\(\Leftrightarrow xy+yz+xz=11\)

\(\Rightarrow\hept{\begin{cases}xz=11-8\\xy=11-9\\yz=11-5\end{cases}\Rightarrow\hept{\begin{cases}xz=3\\xy=2\\yz=6\end{cases}}}\Rightarrow xz\cdot xy\cdot yz=3\cdot2\cdot6=36\)

\(\Leftrightarrow\left(xyz\right)^2=36=\left(\pm6\right)^2\)

TH1: \(xyz=6\)

\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=6:3\\z=6:2\\x=6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=2\\z=3\\x=1\end{cases}}}\)

TH2: \(xyz=-6\)

\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=-6:3\\z=-6:2\\x=-6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=-2\\z=-3\\x=-1\end{cases}}}\)

Vậy 2 tập nghiệm của x, y, z là (1;2;3) và (-1;-2;-3)

28 tháng 1 2023

21 tháng 6 2016

Từ đề bài => x,y,z >0

Nhân theo vế 3 dữ kiện trên ta được x2y2z2=16 => xyz=4(1)

Mà \(z\sqrt{xy}=1=>z^2xy=1\)(2)

Lấy (2) chia (1)=> z=1/4

Và \(y\sqrt{zx}=2=>y^2zx=4\)(3)

Lấy (3) chia (1)=> y=1

Vì xyz=4=> x=16

Vậy x=16; y=1;z=1/4