K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2020

\(VT=\left(x^4\right)^2+\left(y^4\right)^2+\left(z^4\right)^2\ge\frac{1}{3}\left(x^4+y^4+z^4\right)^2\)

\(VT\ge\frac{1}{27}\left(x^2+y^2+z^2\right)^4=\frac{1}{27}\left(x^2+y^2+z^2\right)^3\left(x^2+y^2+z^2\right)\)

\(VT\ge\frac{1}{27}\left(3\sqrt[3]{x^2y^2z^2}\right)^3\left(xy+yz+zx\right)=x^2y^2z^2\left(xy+yz+zx\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

19 tháng 7 2015

 

x+ y2 + z2 = xy + yz + zx 

=>2.(x2+y2+z2)=2.(xy+yz+zx)

<=>2x2+2y2+2z2=2xy+2yz+2zx

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x-y=0 và y-x=0 và z-x=0

<=>x=y và y=x và z=x

Vậy x=y=z

 

19 tháng 7 2015

Chứng minh phản chứng.      

6 tháng 5 2018

Nhã Doanh giúp mk vs

6 tháng 5 2018

sử đề lại đi

5 tháng 6 2015

\(x^2+y^2+z^2=xy+yz+zx\)

\(x^2+y^2+z^2-xy-yz-zx\)=0

Nhân cả 2 vé cho 2 ta được :

\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(x^2-2xy+y^2+y^2-2yz+z^2+x^2-2zx+z^2\)=0

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

x-y=0 suy ra x=y

y-z=0suy ra y=z

x-z=0 suy ra x=z

x=y=z

16 tháng 9 2019

2) \(x=y+1\Rightarrow x-y=1\)

\(\Rightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow x^8-y^8=x^8-y^8\)(đúng)

Vậy \(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)(đpcm)

30 tháng 11 2017

Ta có:

VT= \(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)

\(=2\left(xy+yz+zx\right)\) = VP

=> đpcm

30 tháng 11 2017

\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)

Biến đổi vế trái:

VT\(\)\(\)\(=\left[\left(x+y\right)+z\right]^2-x^2-y^2-z^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2-x^2-y^2-z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2-x^2-y^2-z^2\)\

\(=2xy+2yz+2zx\)

\(=2\left(xy+yz+zx\right)=\) VP

24 tháng 5 2017

lười thế bạn nhân phá ra là được mà

24 tháng 5 2017

a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Biến đổi vế trái ta được :

\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)

\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)

\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

20 tháng 12 2018

Ta có:

\(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)

\(=2xy+2yz+2zx\)

\(=2\left(xy+yz+zx\right)\)