cho A : 20 + 21 + 22 +..... 219
B : 220
Chứng minh rằng A là số tự nhiên liên tiếp của B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=2^1+2^2+...+2^{20}\)
\(\Leftrightarrow2A-A=2^1+2^2+...+2^{20}-2^0-...-2^{19}\)
\(\Leftrightarrow A=2^{20}-1\)
Vậy: A và B là hai số tự nhiên liên tiếp
Do a + b + c là 3 số tự nhiên chẵn liên tiếp tăng dần
=> a + b + c = a + a + 2 + a + 4
= 3a + 6
= 3 . ( a + 2 )
=> a + b + c = 3 . ( a + 2 )
=> 3 . ( a + 2 ) = 66
=> a + 2 = 22
=> a = 20
Do a,b,c là 3 số tự nhiên chẵn liên tiếp tăng dần nên
=> a = 20 ; b = 22 ; c = 24
tự lập bảng và nhận xét
~ học tốt ~
TK :
ta có 4A= 22 + 24 + 26 + 28 + ....+ 22024
từ đó 3A = 4A - A = 22 + 24 + .... + 22024 - 1 + 22 + .... + 22022 = 22024 - 1
mà 2B = 22024
Từ đó dễ dàng suy ra được 3A và 2B là 2 số liên tiếp.
A=1+2 mũ 1 +2 mũ 2 + ......+2 mũ 19
suy ra 2A=2 mũ + 2 mũ 2 + ........+ 2 mũ 20
suy ra A = [ 2 mũ 1 + 2 mũ 2 + .......+ 2 mũ 20 ] - [ 1 + 2 mũ 1 + 2 mũ 2 + ....... + 2 mũ 19 ]
suy ra A = 2 mũ 20 -1
suy ra A và B là 2 số tự nhiên liên tiếp
Ko tắt đâu
Ta có:
\(A=2^0+2^1+2^2+2^3+...+2^{19}\)
\(A=1+2+2^2+2^3+...+2^{19}\)
\(2A=2+2^2+2^3+2^4+...+2^{20}\)
\(2A-A=\left(2+2^2+2^3+2^4...+2^{20}\right)-\left(1+2+2^2+2^3+...+2^{19}\right)\)
\(A=2^{20}-1\)
\(\Rightarrow A=2^{20}-1;B=2^{20}\) là hai số liên tiếp.
Vậy...
\(#tutuuu...\)
Giải thích các bước giải:
a,b,c là ba số tự nhiên chẵn liên tiếp tăng dần nên :
a,b,c chia hết cho 2
b=a+2
c=b+2=a+2+2=a+4
Mà a+b+c=66
=> a+(a+2)+(a+4)=66
=> 3a + 6 = 66
=> 3a = 60
=> a = 20
=> b=20+2=22
c=20+4=24
Thay a=20, b=22, c=24 vào bảng trên, ta có:
20 20 21 20 19
20 20 23 21 20
23 22 19 22 22
21 20 22 24 23
Có 6 giá trị khác nhau của dấu hiệu: 19; 20; 21; 22; 23; 24.
Bảng tần số:
Giá trị(x) 19 20 21 22 23 24
Tần số(n) 2 7 3 4 3 1 N=20
Nhận xét:
-Giá trị có tần số nhiều nhất là : 20.
-Giá trị có tần số ít nhất là : 24.
Giải:
a) Gọi 3 số tự nhiên liên tiếp đó lần lượt là: a, a + 1, a + 2 ( a,a+1,a+2 thuộc N )
Xét tổng a, a + 1, a + 2 ta có:
\(a+\left(a+1\right)+\left(a+2\right)=\left(a+a+a\right)+\left(1+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrowđpcm\)
b) Gọi 4 số tự nhiên liên tiếp đó lần lượt là a, a + 1, a + 2, a + 3 ( a,a+1,a+2,a+3 thuộc N )
Xét tổng của a, a + 1, a + 2, a + 3 ta có:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=\left(a+a+a+a\right)+\left(1+2+3\right)\)
\(=4a+6\)
\(\Rightarrowđpcm\)
c) Gọi 5 số tự nhiên đó lần lượt là: a, a + 1, a + 2, a + 3, a + 4 ( a, a+1, a+2 , a+3, a+4 thuộc N )
Xét tổng của a, a + 1, a + 2, a + 3, a + 4 ta có:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)\)
\(=\left(a+a+a+a+a\right)+\left(1+2+3+4\right)\)
\(=5a+10\)
\(=5\left(a+2\right)⋮5\)
\(\Rightarrowđpcm\)
a) Gọi ba số tự nhiên liên tiếp là a, a + 1 , a + 2 , a\(\in\)N. Khi đó a + (a+1) + (a+2) = 3a + a
Mà 3a \(⋮\) 3, 3 \(⋮\) 3 \(\Rightarrow\) (3a + a) \(⋮3\left(đpcm\right)\)
b) \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=4a+6\)
Mà \(4a⋮4,6⋮̸\) 4, nên (4a+6) \(⋮̸\) 4 (đpcm)
c) a + (a + 1) + (a + 2) + (a + 3) + (a+4) = 5a + 10
Mà 5a \(⋮\) 5 và 10 \(⋮5nên\left(5a+10\right)⋮5\left(đpcm\right)\)
\(2A=2^1+2^2+...+2^{20}\)
nên \(A=2^{20}-1\)
Vậy: A và B là hai số tự nhiên liên tiếp
\(2A=2+2^2+2^3+...+2^{20}\\ \Leftrightarrow2A-A=2+2^2+...+2^{20}-1-2-2^2-...-2^{19}\\ \Leftrightarrow A=2^{20}-1\)
Mà \(B=2^{20}\) nên ta có đpcm
Ta có : \(A=1+2+2^2+...+2^{19}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{20}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{20}\right)-\left(1+2+2^2+...+2^{19}\right)\)
hay \(A=2^{20}-1\)
\(\Rightarrow A\)và \(B\)là hai số tự nhiên liên tiếp .