Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=2^1+2^2+...+2^{20}\)
\(\Leftrightarrow2A-A=2^1+2^2+...+2^{20}-2^0-...-2^{19}\)
\(\Leftrightarrow A=2^{20}-1\)
Vậy: A và B là hai số tự nhiên liên tiếp
TK :
ta có 4A= 22 + 24 + 26 + 28 + ....+ 22024
từ đó 3A = 4A - A = 22 + 24 + .... + 22024 - 1 + 22 + .... + 22022 = 22024 - 1
mà 2B = 22024
Từ đó dễ dàng suy ra được 3A và 2B là 2 số liên tiếp.
A=1+2 mũ 1 +2 mũ 2 + ......+2 mũ 19
suy ra 2A=2 mũ + 2 mũ 2 + ........+ 2 mũ 20
suy ra A = [ 2 mũ 1 + 2 mũ 2 + .......+ 2 mũ 20 ] - [ 1 + 2 mũ 1 + 2 mũ 2 + ....... + 2 mũ 19 ]
suy ra A = 2 mũ 20 -1
suy ra A và B là 2 số tự nhiên liên tiếp
Ko tắt đâu
Ta có:
\(A=2^0+2^1+2^2+2^3+...+2^{19}\)
\(A=1+2+2^2+2^3+...+2^{19}\)
\(2A=2+2^2+2^3+2^4+...+2^{20}\)
\(2A-A=\left(2+2^2+2^3+2^4...+2^{20}\right)-\left(1+2+2^2+2^3+...+2^{19}\right)\)
\(A=2^{20}-1\)
\(\Rightarrow A=2^{20}-1;B=2^{20}\) là hai số liên tiếp.
Vậy...
\(#tutuuu...\)
Giải:
a) Gọi 3 số tự nhiên liên tiếp đó lần lượt là: a, a + 1, a + 2 ( a,a+1,a+2 thuộc N )
Xét tổng a, a + 1, a + 2 ta có:
\(a+\left(a+1\right)+\left(a+2\right)=\left(a+a+a\right)+\left(1+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrowđpcm\)
b) Gọi 4 số tự nhiên liên tiếp đó lần lượt là a, a + 1, a + 2, a + 3 ( a,a+1,a+2,a+3 thuộc N )
Xét tổng của a, a + 1, a + 2, a + 3 ta có:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=\left(a+a+a+a\right)+\left(1+2+3\right)\)
\(=4a+6\)
\(\Rightarrowđpcm\)
c) Gọi 5 số tự nhiên đó lần lượt là: a, a + 1, a + 2, a + 3, a + 4 ( a, a+1, a+2 , a+3, a+4 thuộc N )
Xét tổng của a, a + 1, a + 2, a + 3, a + 4 ta có:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)\)
\(=\left(a+a+a+a+a\right)+\left(1+2+3+4\right)\)
\(=5a+10\)
\(=5\left(a+2\right)⋮5\)
\(\Rightarrowđpcm\)
a) Gọi ba số tự nhiên liên tiếp là a, a + 1 , a + 2 , a\(\in\)N. Khi đó a + (a+1) + (a+2) = 3a + a
Mà 3a \(⋮\) 3, 3 \(⋮\) 3 \(\Rightarrow\) (3a + a) \(⋮3\left(đpcm\right)\)
b) \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=4a+6\)
Mà \(4a⋮4,6⋮̸\) 4, nên (4a+6) \(⋮̸\) 4 (đpcm)
c) a + (a + 1) + (a + 2) + (a + 3) + (a+4) = 5a + 10
Mà 5a \(⋮\) 5 và 10 \(⋮5nên\left(5a+10\right)⋮5\left(đpcm\right)\)
\(2A=2^1+2^2+...+2^{20}\)
nên \(A=2^{20}-1\)
Vậy: A và B là hai số tự nhiên liên tiếp
\(2A=2+2^2+2^3+...+2^{20}\\ \Leftrightarrow2A-A=2+2^2+...+2^{20}-1-2-2^2-...-2^{19}\\ \Leftrightarrow A=2^{20}-1\)
Mà \(B=2^{20}\) nên ta có đpcm
a)gọi 3 số tự nhiên liên tiếp đó là :
k;k+1;k+2
tổng 3 số tự nhiên liên tiếp đó là: k+k+1+k+2
ta có
k+k+1+k+2
\(\Leftrightarrow\)k+(k+1)+(k+2)
\(\Leftrightarrow\)k.3+(1+2)
\(\Leftrightarrow\)k.3+3
vì k.3 chia hết cho 3 và 3 chia hết cho 3 nên k.3+3
\(\Rightarrow\)k+k+1+k+2 chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) gọi 4 số tự nhiên liên tiếp đó 4 là:
4;4+1;4+2;4+3
tổng của 4 số tự nhiên liên tiếp 4 là
k+k+1+k+2+k+3
ta có
k+k+1+k+2+k+3
\(\Leftrightarrow\)k+(k+1)+(k+2)+(k+3)
\(\Leftrightarrow\)k.4+(1+2+3)
\(\Leftrightarrow\)k.4+6
vì k.4 chia hết cho 4 nhưng 6 không chia hết cho 4 nên k.4+6 không chia hết cho 4
\(\Rightarrow\) k+k+1+k+2+k+3 không chia hết cho 4
vậy tổng 4 số tự nhiên ko chia hết cho 4
OH SORY BẠN VÌ CÂU b) MÌNH CHỈ LÀM ĐƯỢC CHỨNG MINH RẰNG TỔNG 4 SỐ TỰ NHIÊN LIÊN TIẾP KHÔNG CHIA HẾT CHO 4 THÔI
VÀ MK NGHĨ CÂU B ĐỀ SAi
a) Gọi 3 STN liên tiếp là a; a+1 ; a+2.
Ta có: a + a+1 + a+2 = a+a+a + (1+2) = 3a + 3.
Vì 3a và 3 chia hết cho 3 => 3a+3 chia hết cho 3 hay tổng 3 STN liên tiếp chia hết cho 3
a) Gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
Ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
Vậy tổng của 3 số liên tiếp chia hết cho 3
b) Gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
Ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )
22A=22+24+26+28+...+22024
4A-A=22024-1
3A=22024-1
2B=22023.2=22024
=> 3A và 2B là 2 stn liên tiếp
A = 1 + 22 + 24 + 26 +...+22022
22A = 22 + 24 + 26 +....+ 22022 + 22024
4A - A = 22024 - 1
3A = 22024 - 1 (1)
B = 22023
2B = 22024 (2)
Từ (1) và (2) ta có 2B - 3A = 22024 - 22024- (-1) = 1;
mà 2B và 3A đều là số tự nhiên
Vậy 2B và 3A là 2 số tự nhiên liên tiếp vì chúng là hai số tự nhiên hơn kém nhau 1 đơn vị ( đpcm)
Ta có : \(A=1+2+2^2+...+2^{19}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{20}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{20}\right)-\left(1+2+2^2+...+2^{19}\right)\)
hay \(A=2^{20}-1\)
\(\Rightarrow A\)và \(B\)là hai số tự nhiên liên tiếp .