-3/8x - 6/5 =7/5+4/8x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^{13}-\left(8x^{12}-8x^{11}+8x^{10}-8x^9+.....+8x^2-8x^1\right)+8\)
Đặt \(B=8x^{12}-8x^{11}+8x^{10}-....+8x^2-8x^1\)
\(B=8.\left(x^{12}-x^{11}+x^{10}-x^9+....+x^2-x^1\right)\)
Đặt \(C=x^{12}-x^{11}+x^{10}-x^9+...+x^2-x\)
Suy ra \(C.x=x^{13}-x^{12}+x^{11}-x^{10}+.....+x^3-x^2\)
Nên \(C.x-C=x^{13}-x\)hay \(C.\left(x-1\right)=x^{13}-x\)
Khi đó \(C=\frac{x^{13}-x}{x-1}\)nên\(B=8.\frac{x^{13}-x}{x-1}\)
Từ đó tính tương tự nha , cách làm thì có thể sai những em vẫn cố gắng giúp , ai có cách hay hơn thì giải nhé
a: =x^4-3x^5+4x^8
b: =2x^3+2x^2+4x
c: =4x^2+8x-5
d: =2x+3x^2+7x^4
\(A=x^5-5x^4+5x^3-5x^2+5x-6\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x-2\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)
\(=-2\)
a) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|\frac{5}{4}x-\frac{7}{2}\right|=0\\\left|\frac{5}{8}x+\frac{3}{5}\right|=0\end{cases}}=\hept{\begin{cases}\left|\frac{5}{4}x\right|=\frac{7}{2}\\\left|\frac{5}{8}x\right|=\frac{-3}{5}\end{cases}=\hept{\begin{cases}x=\frac{14}{5}\\x=\frac{-24}{25}\end{cases}}}\)
b) \(\left|\frac{7}{8}x+\frac{5}{6}\right|-\left|\frac{1}{2}x+5\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|\frac{7}{8}x+\frac{5}{6}\right|=0\\\left|\frac{1}{2}x+5\right|=0\end{cases}}=\hept{\begin{cases}\left|\frac{7}{8}x\right|=\frac{-5}{6}\\\left|\frac{1}{2}x\right|=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-20}{21}\\x=\frac{-5}{2}\end{cases}}\)
a. \(3-4x\left(25-2x\right)-8x^2+x-300=0\)
\(\Leftrightarrow3-100x+8x^2-8x^2+x-300=0\)
\(\Leftrightarrow-297-99x=0\)
\(\Leftrightarrow x=3\)
Vậy \(n_0\) của PT là: x=3
b. \(\Leftrightarrow\frac{\left(2-6x\right)}{5}-2+\frac{3x}{10}=7-\frac{3x+3}{4}\)
\(\Leftrightarrow\frac{\left(4-12x\right)}{5}-\frac{20}{10}+\frac{3x}{10}=\frac{\left(28-3x-3\right)}{4}\)
\(\Leftrightarrow\frac{\left(-16-9x\right)}{10}=\frac{\left(25-3x\right)}{4}\)
\(\Leftrightarrow-64-36x=250-30x\)
\(\Leftrightarrow-6x=314\)
\(\Leftrightarrow x=-\frac{157}{3}\)
Vậy -\(n_0\) của PT là: \(x=\frac{-157}{3}\)
c. \(5x+\frac{2}{6}-8x-\frac{1}{3}=4x+\frac{2}{5}-5\)
\(\Leftrightarrow-3x=4x-\frac{23}{5}\)
\(\Leftrightarrow7x=\frac{23}{5}\)
\(\Leftrightarrow x=\frac{23}{35}\)
Vậy \(n_0\) của PT là: \(x=\frac{23}{35}\)
d. \(3x+\frac{2}{3}-3x+\frac{1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow\frac{5}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow x=-\frac{5}{12}\)
Vậy \(n_0\) của Pt là: \(x=-\frac{5}{12}\)
4: \(\Leftrightarrow3^{x+4}\cdot\dfrac{1}{3}-4\cdot3^x=3^{16}\left(1-4\cdot3^3\right)\)
=>\(3^x\cdot27-4\cdot3^x=3^{16}\cdot\left(-107\right)\)
=>3^x*23=3^16*(-107)
=>\(x\in\varnothing\)
2: \(\Leftrightarrow2^x\left(\dfrac{3}{5}+\dfrac{7}{5}\cdot2^3\right)=2^{10}\left(\dfrac{3}{5}+\dfrac{7}{5}\cdot2^3\right)\)
=>2^x=2^10
=>x=10
3: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)
=>8^x=8^9
=>x=9
1: \(\Leftrightarrow3^x\cdot\left(4\cdot\dfrac{1}{9}+2\cdot3\right)=3^4\left(4+2\cdot3^3\right)\)
=>3^x=3^4*3^2
=>x=4+2=6
\(\frac{-3}{8x}-\frac{6}{5}=\frac{7}{5}+\frac{4}{8x}\)
\(\Leftrightarrow\frac{-3}{8x}-\frac{4}{8x}=\frac{7}{5}+\frac{6}{5}\)
\(\Leftrightarrow\frac{-7}{8x}=\frac{13}{5}\Leftrightarrow-35=104x\)
\(\Leftrightarrow x=-\frac{35}{104}\)