Cho hình thang vuông ABCD đường cao AB = h, AD = a, BC = b. Tìm điều kiện để
a) AC vuông góc DB
b) Góc AIB = 90 độ với I là trung điểm của CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc
kéo dài DA và CB cắt nhau tại K
AB là đường trung bình ( AB//DC và 2AB = DC)
=> B là trung điểm KC
=> DB là trung tuyến ΔKDC vuông tại D
=> DB = BC = DC
=> tam giác DBC đều
Vậy góc KCD= 60độ
tổng 4 góc trong tứ giác ABCD = 360độ
=> góc ABC = 120độ
cách 2
Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật
nên ^ABH=90* (1)
Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)
Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*
Xét ΔIAB và ΔICD có
góc IAB=góc ICD
goc AIB=góc CID
=>ΔIAB đồng dạng với ΔICD
=>IB/ID=AB/CD=BM/MC
=>IM//DC
=>IM vuông góc AD
a) Để \(AC\perp BD\) thì \(\Rightarrow\overrightarrow{AC}\cdot\overrightarrow{BD}=0\Rightarrow\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\left(\overrightarrow{BA}+\overrightarrow{AD}\right)=0\\ \Rightarrow\overrightarrow{AB}\cdot\overrightarrow{BA}+\overrightarrow{BC}\cdot\overrightarrow{BA}+\overrightarrow{AB}\cdot\overrightarrow{AD}+\overrightarrow{BC}\cdot\overrightarrow{AD}=0\\ \Rightarrow-h^2+0+0+ab=0\\ \Rightarrow h^2=ab\)
b) Để \(AI\perp BI\) thì \(\Rightarrow\overrightarrow{AI}\cdot\overrightarrow{BI}=0\Rightarrow\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{AC}\right)\dfrac{1}{2}\left(\overrightarrow{BD}+\overrightarrow{BC}\right)=0\\ \Rightarrow\left(\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{BC}\right)\left(\overrightarrow{BA}+\overrightarrow{AD}+\overrightarrow{BC}\right)=0\\ \\ \Rightarrow\overrightarrow{AD}\cdot\overrightarrow{BA}+\overrightarrow{AB}\cdot\overrightarrow{BA}+\overrightarrow{BC}\cdot\overrightarrow{BA}+\overrightarrow{AD}\cdot\overrightarrow{AD}+\overrightarrow{AB}\cdot\overrightarrow{AD}+\overrightarrow{BC}\cdot\overrightarrow{AD}+\overrightarrow{AD}\cdot\overrightarrow{BC}+\overrightarrow{AB}\cdot\overrightarrow{BC}+\overrightarrow{BC}\cdot\overrightarrow{BC}=0\\ \Rightarrow-h^2+a^2+ab+ab+b^2=0\\ \Rightarrow a^2+2ab+b^2=\left(a+b\right)^2=h^2\\ \Rightarrow a+b=h\)
siêng quá nhở :)))))