Cho đường tròn (O) và điểm M nằm bên ngoài đường tròn. Từ M kẻ các tiếp tuyến MN và MH ( N, H là các tiếp điểm), I là giao điểm của MO và NH
a, C/m: NH ⊥ OM
b, Kẻ đường kính ND, MD cắt (O) tại K.
C/m: MI.MO = MK.MD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Ta thấy:$MN=MH$ (tính chất 2 tiếp tuyến cắt nhau)
$ON=OH=R$
$\Rightarrow OM$ là trung trực của $NH$
$\Rightarrow OM\perp NH$ (đpcm)
b)
Vì $MH$ là tiếp tuyến của $(O)$ nên $MH\perp OH$
$\Rightarrow \triangle MOH$ vuông tại $H$
Áp dụng hệ thức lượng trong tam giác vuông đối với tam giác $MHO$ có đường cao $HI$ ta có:
$MI.MO=MH^2(1)$
Mặt khác, xét tam giác $MKH$ và $MHD$ có:
$\widehat{M}$ chung
$\widehat{MHK}=\widehat{MDH}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)
$\Rightarrow \triangle MKH\sim \triangle MHD$ (g.g)
$\Rightarrow \frac{MK}{MH}=\frac{MH}{MD}\Rightarrow MK.MD=MH^2(2)$
Từ $(1);(2)\Rightarrow MI.MO=MK.MD$ (đpcm)
a. Câu này đơn giản em tự giải.
b.
Ta có: \(\left\{{}\begin{matrix}OB=OC=R\\MB=MC\left(\text{t/c hai tiếp tuyến cắt nhau}\right)\end{matrix}\right.\)
\(\Rightarrow OM\) là trung trực của BC
\(\Rightarrow OM\perp BC\) tại H đồng thời H là trung điểm BC hay \(HB=HC\)
\(OC\perp MC\) (MC là tiếp tuyến tại C) \(\Rightarrow\Delta OMC\) vuông tại C
Áp dụng hệ thức lượng trong tam giác vuông OMC với đường cao CH:
\(CH^2=OH.MH\)
c.
C nằm trên đường tròn và AB là đường kính \(\Rightarrow\widehat{ACB}\) là góc nt chắn nửa đường tròn
\(\Rightarrow\widehat{ACB}=90^0\)
Xét hai tam giác MBH và BAC có:
\(\left\{{}\begin{matrix}\widehat{MHB}=\widehat{ACB}=90^0\\\widehat{MBH}=\widehat{BAC}\left(\text{cùng chắn BC}\right)\end{matrix}\right.\) \(\Rightarrow\Delta MBH\sim\Delta BAC\left(g.g\right)\)
\(\Rightarrow\dfrac{BH}{AC}=\dfrac{MH}{BC}\Rightarrow\dfrac{BH}{AC}=\dfrac{2HF}{2CH}\) (do F là trung điểm MH và H là trung điểm BC)
\(\Rightarrow\dfrac{BH}{AC}=\dfrac{HF}{CH}\)
Xét hai tam giác BHF và ACH có:
\(\left\{{}\begin{matrix}\dfrac{BH}{AC}=\dfrac{HF}{CH}\left(cmt\right)\\\widehat{BHF}=\widehat{ACH}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta BHF\sim\Delta ACH\left(c.g.c\right)\)
\(\Rightarrow\widehat{HBF}=\widehat{CAH}\)
Mà \(\widehat{CAH}=\widehat{CBQ}\) (cùng chắn CQ)
\(\Rightarrow\widehat{HBF}=\widehat{CBQ}\) hay \(\widehat{HBF}=\widehat{HBQ}\)
\(\Rightarrow B,Q,F\) thẳng hàng
a: góc SMO+góc SNO=180 độ
=>SMON nội tiếp
Tâm là trung điểm của OS
R=OS/2
b: ΔOMS vuông tại M có sin MSO=MO/OS=1/2
nên góc MSO=30 độ
=>góc MOK=60 độ
=>ΔOMK đều
=>MK=OM=R=OK
Xét ΔOKN có OK=ON và góc KON=60 độ
nên ΔOKN đều
=>KN=ON=R
=>OM=MK=KN=ON
=>OMKN là hình thoi
=>KM=KN
a: Xét (O) có
AM là tiếp tuyến
AN là tiếp tuyến
Do đó: AM=AN
hay A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
nên O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
hay AO⊥MN(3)
b: Xét (O) có
ΔMNC nội tiếp
MC là đường kính
Do đó: ΔMNC vuông tại N
=>MN⊥NC(4)
Từ (3) và (4) suy ra OA//CN
c: Xét (O) có
ΔMDC nội tiếp
MC là đường kính
Do đó:ΔMDC vuông tại D
Xét ΔMAC vuông tại M có MD là đường cao
nên \(AD\cdot AC=AM^2\left(5\right)\)
Xét ΔMOA vuông tại M có MH là đường cao
nên \(AH\cdot AO=AM^2\left(6\right)\)
Từ (5) và (6)suy ra \(AD\cdot AC=AH\cdot AO\)
a: Xét tứ giác MBOC có \(\widehat{MBO}+\widehat{MCO}=90^0+90^0=180^0\)
=>MBOC là tứ giác nội tiếp
=>M,B,O,C cùng thuộc một đường tròn
b: Sửa đề: \(CH\cdot HB=OH\cdot HM\)
Xét (O) có
MB,MC là các tiếp tuyến
Do đó: MB=MC
=>M nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra MO là đường trung trực của BC
=>MO\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBM vuông tại B có BH là đường cao
nên \(OH\cdot HM=HB^2\)
=>\(OH\cdot HM=HB\cdot HC\)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: Xét tứ giác MBOC có \(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)
nên MBOC là tứ giác nội tiếp
=>M,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
MB,MC là các tiếp tuyến
Do đó: MB=MC
=>M nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OM là đường trung trực của BC
=>OM\(\perp\)BC tại I và I là trung điểm của BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD tại C
Ta có: BC\(\perp\)CD
BC\(\perp\)OM
Do đó: CD//OM
c: Xét (O) có
ΔBHD nội tiếp
BD là đường kính
Do đó: ΔBHD vuông tại H
=>BH\(\perp\)HD tại H
=>BH\(\perp\)DM tại H
Xét ΔBDM vuông tại B có BH là đường cao
nên \(MH\cdot MD=MB^2\left(3\right)\)
Xét ΔMBO vuông tại B có BI là đường cao
nên \(MI\cdot MO=MB^2\left(4\right)\)
Từ (3) và (4) suy ra \(MH\cdot MD=MI\cdot MO\)
=>\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)
Xét ΔMHI và ΔMOD có
\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)
góc HMI chung
Do đó: ΔMHI đồng dạng với ΔMOD
=>\(\widehat{MIH}=\widehat{MDO}=\widehat{ODH}\)
mà \(\widehat{ODH}=\widehat{OHD}\)(ΔOHD cân tại O)
nên \(\widehat{MIH}=\widehat{OHD}\)