K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc SMO+góc SNO=180 độ

=>SMON nội tiếp

Tâm là trung điểm của OS

R=OS/2

b: ΔOMS vuông tại M có sin MSO=MO/OS=1/2

nên góc MSO=30 độ

=>góc MOK=60 độ

=>ΔOMK đều

=>MK=OM=R=OK

Xét ΔOKN có OK=ON và góc KON=60 độ

nên ΔOKN đều

=>KN=ON=R

=>OM=MK=KN=ON

=>OMKN là hình thoi

=>KM=KN

a: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA

=>AI*AO=2R^2

Xét ΔBDE vuông tại D có DC vuông góc BE

nên ΔBDE vuông tại D

=>BC*BE=BD^2=4R^2

=>BC*BE+AI*AO=6R^2

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0

a: góc ONM+góc OPM=180 độ

=>ONMP nội tiếp

b: ONMP nội tiếp

=>góc NMO=góc NPO

c: Xét ΔMNA và ΔMBN có

góc MNA=góc MBN

góc NMA chung

=>ΔMNA đồng dạng với ΔMBN

=>MN/MB=MA/MN

=>MN^2=MB*MA

a: góc MNO+góc MPO=90+90=180 độ

=>MNOP nội tiếp

b: MNOP nội tiếp

=>góc NMO=góc NPO

17 tháng 5 2018

 a) C/m tg ABCO nội tiếp:

+) Ta có: góc ACO = 90•( vì AC là tiếp tuyến đg tròn (O))

               góc ABO = 90•( vì AB là tiếp tuyến đg tròn (O))

+) Xét tg ABOC có: góc ACO+ góc ABO=90•+90•=180•

Mà 2 góc ở vị trí đối nhau

=> tg ABOC nội tiếp đg tròn(dhnb)

b) C/m: CD// AO:

+) Vì AB và AC là 2 tiếp tuyến cắt nhau tại A(gt) => AO là đg pg của góc COB( t/c 2 tiếp tuyến cắt nhau)

=> AO là pg của tam giác COB

Mà tam giác COB cân tại O( OB=OC=R)

=> OA là đg cao của tam giác COB( t/c tam giác cân)

=> OA vuông góc vs CB( t/c) (1)

+) Xét (O) ta có:

BD là đg kính( gt)

góc BCD là góc nội tiếp chắn cung BD

=> góc BCD= 90• ( t/c góc nội tiếp chắn nửa đg tròn)

=> CD vuông góc vs CB(t/c) (2)

Từ(1) và (2) suy ra: CD// OA( từ vuông góc đến song song).

mk chưa ra câu c nên xin lỗi bn nhiều nhé....

2: góc OME+góc OAE=180 độ

=>OMEA nội tiếp

=>góc AOE=góc AME=góc OMB