Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x2-4x-x+2=0
=> 2x(x-2)-(x-2)=0
=> (2x-1)(x-2)=0
=> \(\left[{}\begin{matrix}2x-1=0\\x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
b) 3x2-12x+5x-20=0
=> 3x(x-4)+5.(x-4)=0
=> (x-4)(3x+5)=0
=> \(\left[{}\begin{matrix}x-4=0\\3x+5=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=4\\x=-\dfrac{5}{3}\end{matrix}\right.\)
c)x3+2x2-x2-2x+2x+4=0
=> x2(x+2)-x(x+2)+2(x+2)=0
=>(x2-x+2)(x+2)=0
=> x=-2( vi x2-x+2>0)
d) x3-x2-4x2+4x+4x-4=0
=> x2(x-1)-4x(x-1)+4(x-1)=0
=>(x-1)(x2-4x+4)=0
=> \(\left[{}\begin{matrix}x-1=0\\x^2-4x+4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2x2-5x+2=0
⇔2x2-x-4x+2=0
⇔x(2x-1)-2(2x-1)=0
⇔(x-2)(2x-1)=0
⇔\(\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=2\\2x=1\Leftrightarrow x=\dfrac{1}{2}\end{matrix}\right.\)
sậy S=\(\left\{2;\dfrac{1}{2}\right\}\)
x3+x2+4=0
⇔x3+2x2-x2-2x+2x+4=0
⇔(x3+2x2)-(x2+2x)+(2x+4)=0
⇔x2(x+2)-x(x+2)+2(x+2)=0
⇔(x+2)(x2-x+2)=0
⇔x+2=0 và x2-x+2=0
⇔x=-2 và \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\)(vô lý)
vậy S={-2}
\(\Leftrightarrow5\left(x-4\right)-\left(x-4\right)^2=0\\ \Leftrightarrow\left(x-4\right)\left(5-x+4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(9-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=9\end{matrix}\right.\)
\(-x^4+4x^2-5x^2+20=0\\\Rightarrow -(x^4-4x^2)-(5x^2-20)=0\\\Rightarrow-x^2(x^2-4)-5(x^2-4)=0\\\Rightarrow(x^2-4)(-x^2-5)=0\\\Rightarrow-(x-2)(x+2)(x^2+5)=0\\\Rightarrow(2-x)(x+2)=0(vì.x^2+5>0\forall x)\)
\(\Rightarrow\left[{}\begin{matrix}2-x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
a) \(5x - 30 = 0\)
\(5x = 0 + 30\)
\(5x = 30\)
\(x = 30:5\)
\(x = 6\)
Vậy phương trình có nghiệm \(x = 6\).
b) \(4 - 3x = 11\)
\( - 3x = 11 - 4\)
\( - 3x = 7\)
\(x = \left( { 7} \right):\left( { - 3} \right)\)
\(x = \dfrac{-7}{3}\)
Vậy phương trình có nghiệm \(x = \dfrac{7}{3}\).
c) \(3x + x + 20 = 0\)
\(4x + 20 = 0\)
\(4x = 0 - 20\)
\(4x = - 20\)
\(x = \left( { - 20} \right):4\)
\(x = - 5\)
Vậy phương trình có nghiệm \(x = - 5\).
d) \(\dfrac{1}{3}x + \dfrac{1}{2} = x + 2\)
\(\dfrac{1}{3}x - x = 2 - \dfrac{1}{2}\)
\(\dfrac{{ - 2}}{3}x = \dfrac{3}{2}\)
\(x = \dfrac{3}{2}:\left( {\dfrac{{ - 2}}{3}} \right)\)
\(x = \dfrac{{ - 9}}{4}\)
Vậy phương trình có nghiệm \(x = \dfrac{{ - 9}}{4}\).
xem lại câu b nha, tại vì trên là 7 dưới -7
a, 3 ( x + 1 ) - 2 ( 3 x - 4 ) = - 13
=> 3x + 3 - 6x + 8 = - 13
=> 6x - 3x = 3 + 8 + 13
=> 3x = 24
=> x = 8
b, 2 ( x - 3 ) - 4 ( 2 x - 1 ) = - 20
=> 2x - 6 - 8x + 4 = - 20
=> 8x - 2x = - 6 + 4 + 20
=> 6x = 18
=> x = 3
c, 2 x ( x + 3 ) = 0
=> \(\orbr{\begin{cases}2x=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
d, ( x - 1 ) ( 5 x - x ) = 0
=> \(\orbr{\begin{cases}x-1=0\\5x-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\4x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
e, ( x + 3 ) 2 ( 4 - x ) = 0
=> \(\orbr{\begin{cases}\left(x+3\right)^2=0\\4-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x+3=0\\4-x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)
a) \(3\left(x+1\right)-2\left(3x-4\right)=-13\)
\(\Leftrightarrow3x+3-6x+8=-13\)
\(\Leftrightarrow3x-6x=-13-3-8\)
\(\Leftrightarrow-3x=-24\)
\(\Leftrightarrow x=8\)
Vậy \(x=8\)
b) \(2\left(x-3\right)-4\left(2x-1\right)=-20\)
\(\Leftrightarrow2x-6-8x+4=-20\)
\(\Leftrightarrow2x-8x=-20+6-4\)
\(\Leftrightarrow-6x=-18\)
\(\Leftrightarrow x=3\)
Vậy \(x=3\)
c) \(2x\left(x+3\right)=0\)
\(\orbr{\begin{cases}2x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
d)\(\left(x-1\right)\left(5x-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
e)\(\left(x+3\right)^2\left(4-x\right)=0\)
\(\orbr{\begin{cases}\left(x+3\right)^2=0\\4-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+3=0\\-x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
Bài 4 :
\(\left(5x-20\right)+\left(3x^2-12x\right)=0\)
\(\Leftrightarrow5\left(x-4\right)+3x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(5+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\5+3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(x=4\) hoặc \(x=-\dfrac{5}{3}\)
Bài 5 :
\(\left(1-x\right)-3x^2+3x=0\)
\(\Leftrightarrow\left(1-x\right)-\left(3x^2-3x\right)=0\)
\(\Leftrightarrow\left(1-x\right)-3x\left(x-1\right)=0\)
\(\Leftrightarrow\left(1-x\right)+3x\left(1-x\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(1+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\1+3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=-\dfrac{1}{3}\)
Bài 6 :
\(\left(4x+20\right)-\left(x+5\right)^2=0\)
\(\Leftrightarrow4\left(x+5\right)-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)\left(4-x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\-x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=-1\end{matrix}\right.\)
Vậy \(x=-5\) hoặc \(x=-1\)
\(1,5x^2-4\left(x^2-2x+1\right)+20=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4+20=0\)
\(\Leftrightarrow x^2+8x+16=0\)
\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Rightarrow x+4=0\Rightarrow x=-4\)
\(2,x\left(x-2\right)-5x+10=0\)
\(\Leftrightarrow x\left(x-2\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
(x-4)2 - 5x + 20 =0
<=> x2 - 8x + 16 - 5x + 20 =0
<=> x2 - 13x + 36 = 0
<=> (x-4)(x-9) = 0
<=> \(\left[{}\begin{matrix}x=4\\x=9\end{matrix}\right.\)
Vậy ...