(Chứng minh các tính chất của tam giác vuông)
a. Cho ∆MNP có trung tuyến IM = NP : 2. Chứng minh ∆MNP vuông tại M.
b. Cho ∆MNP vuông tại M, có trung tuyến MI. Chứng minh MI = NP : 2 (gợi ý: vẽ điểm Q sao cho I là trung điểm của
MQ).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì tam giác MNP cân ở M nên
theo t/chất tam giác cân ta có : góc MNP=MPN
b, Đây cũng là t/c của tam giác cân nhưng nếu bạn cần thì có thể làm như sau :
Xét tam giác MNI và MPI có :
MN=MP (GT)
NI=IP (GT)
góc MNI=MPI (cmt)
=> Hai tam giác bằng nhau ( t/hợp : c.g.c )
=> MIN=MIP mà MIN+MIP=180 => MIP= 180:2=90độ hay MI vuông góc với NP ( đpcm )
a) Xét tam giác MNP vuông tại M có I là trung điểm NP (gt)
=> MI cũng là phân giác trong của \(\widehat{NMP}\)
=> \(\widehat{NMI}=\widehat{IMP}\)
Xét tam giác MIP và tam giác MIN có:
IM chung
\(\widehat{NMI}=\widehat{IMP}\left(cmt\right)\)
NI=PI ( I là trung điểm NP)
=> Tam giác MIP=tam giác MIN (cgc)
b) Có tam giác MIP= tam giác MIN (cmt)
=> MP=MN (2 cạnh tương ứng)
Xét tam giác MNP vuông tại M có MP=MN (cmt)
=> Tam giác MNP vuông cân tại M
Có MI là đường trung tuyển tam giác MNP
Mà trong tam giác vuông cân đường trung tuyến trùng với đường cao
=> MI _|_ NP (đpcm)
c) F là điểm gì vậy?
a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)
b) xét tam giác MNI và MPI có
MI chung
MN=MP(GT)
IN=IP(MI là trung tuyến nên I là trung điểm NP)
SUY ra tam giác MNI=MPI(C-C-C)
c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)
d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I
Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP
Mà NP=12cm(gt) suy ra NI=12x1/2=6cm
xét tam giác vuông MNI có
NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)
Suy ra MI2=NM2-NI2
mà NM=10CM(gt) NI=6CM(cmt)
suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8
mà MI>0 Suy ra MI=8CM (đpcm)
ế) mik gửi cho bn bằng này nhé
a) Vì MN=MP => tam giác MNP là tam giác cân tại M.
b)Xét tam giác MIN và tam giác MIP có:
MN=MP (vì tam giác MNP cân)
\(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)
NI=PI(vì MI là trung tuyến)
=> tam giác MIN=tam giác MIP(c.g.c)
c) Ta có: MN=MP
IN=IP
=> M,I thuộc trung trực của NP
Hay MI là đường trung trực của NP
d) IN=IP=NP/2=12/2=6(cm)
Xét tam giác MIN có góc MIN =90*
=> MN^2=MI^2 + NI^2
=> MI^2=MN^2-NI^2
=> MN^2 = 10^2 - 6^2
=> MN = 8
e) Tam giác HEI có goc IHE=90*
=> góc HEI + góc HIE= 90*
Mà góc HIE = góc MEF/2
=> góc MEF/2 + góc HEI = 90* (1)
Mà góc MEF + góc HEI + góc IEF = 180*
=> góc MEF/2 + góc IEF = 90* (2)
Từ (1) và (2) => góc HEI = góc IEF
Hay EI là tia phân giác của góc HEF
quỳnh lớp Thầy Trung phải không/?