Chứng tỏ rằng (2n+1)(2n+2) chia hết cho 3 với n thuộc N.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 2n + 2 ).( 2n + 4 ) chia hết cho 8
Chứng tỏ rằng vì :
Ta thấy n phải là số chẵn mà 2n + 2 đã là số chẵn
2n + 4 đã là số chẵn vì \(⋮\) cho 2
Nên chứng tỏ:
\(n+\left(2.4\right)⋮8\)
=> n + 8 chia hết cho 8
=> ( 2n + 2 ).( 2n + 4 ) chia hết cho 8
Lời giải:
$a+a^2+a^3+...+a^{2n}=(a+a^2)+(a^3+a^4)+...+(a^{2n-1}+a^{2n})$
$=a(a+1)+a^3(a+1)+....+a^{2n-1}(a+1)$
$=(a+1)(a+a^3+....+a^{2n-1})\vdots a+1$
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
a) TH1 : n chẵn => n + 10 chia hết 2
TH2 : n lẻ => n + 5 chẵn => chia hết 2
b) Do là tích 3 số tự nhiên liên tiếp nên sẽ có 1 số chia hết 2 và 1 số chia hết 3
c) Do n(n+1) là tích 2 số tự nhiên liên tiếp => Chia hết 2
TH1 : n = 3k => chia hết 3
TH2 : n = 3k +1 => 2n +1 = 6k + 2 +1 = 6k +3 chia hết 3
TH3 : n = 3k + 2 => n + 1 = 3k + 3 chia hết 3
=> ĐPCM
a ) Ta có 2 trường hợp :
TH1 : n là lẻ
Nếu n là lẻ thì ( n + 15 ) là chẵn chia hết cho 2 . Vậy ( n + 10 ) x ( n + 15 ) chia hết cho 2
TH2 : n là chẵn
Nếu n là chẵn thì ( n + 10 ) là chẵn chia hết cho 2 . Vậy ( n + 10 ) x ( n + 15 ) chia hết cho 2
b ) Ta có n , n + 1 , n + 2 là ba số tự nhiên ( hoăc số nguyên ) liên tiếp nên trong ba số đó chắc chắn có một số chẵn nên n( n + 1 ) ( n + 2 ) chia hết cho 2
Ta có n , n + 1 , n + 2 là ba số tự nhiên ( hoặc số nguyên ) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là là 0 , 1 , 2 nên n( + 1) ( n + 2 ) chia hết cho 3
c ) n( n + 1 ) ( 2n + 1 ) = n ( n + 1 ) ( n + 2 + n - 1 ) = n( n + 1 ) ( n + 2 ) + ( n - 1 ) ( n + 1 ) n
Ba số tự nhiên liên tiếp thì chia hết cho 2 , chia hết cho 3
minh van chua ro phan de 2^2n+1-1 la (2^2n+1) hay nhu de ghi ban a
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath