(2x2+3x-1)2-5(2x2+3x+3)+24=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(t=2x^2+3x-1\) ta có:
\(t^2-5\left(t+4\right)+24=0\)
\(\Rightarrow t^2-5t-20+24=0\)
\(\Rightarrow t^2-5t+4=0\)
\(\Rightarrow\left(t-4\right)\left(t-1\right)=0\)\(\Rightarrow\left[\begin{matrix}t=4\\t=1\end{matrix}\right.\)
*)Xét \(2x^2+3x-1=4\)
\(\Rightarrow\left(x-1\right)\left(2x+5\right)=0\)\(\Rightarrow\left[\begin{matrix}x=1\\x=-\frac{5}{2}\end{matrix}\right.\)
*)Xét \(2x^2+3x-1=1\)
\(\Rightarrow\left(x+2\right)\left(2x-1\right)=0\)\(\Rightarrow\left[\begin{matrix}x=-2\\x=\frac{1}{2}\end{matrix}\right.\)
Bài 2:
\(\left(x^2-4\right)\left(x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Rightarrow\left(x^2-4\right)\left(x+3\right)-\left(x^2-4\right)\left(x-1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left[x+3-\left(x-1\right)\right]=0\)
\(\Rightarrow4\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)\(\Rightarrow\left[\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Đặt \(t=2x^2-3x-1\)
\(\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Rightarrow t^2-3t+12-16=0\)
\(\Rightarrow t^2-3t-4=0\)
\(\Rightarrow\left\{{}\begin{matrix}t_1=-1\\t_2=4\end{matrix}\right.\)
\(TH_1:t=-1\)
\(\Leftrightarrow2x^2-3x-1=-1\)
\(\Leftrightarrow2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(TH_2:t=4\)
\(\Leftrightarrow2x^2-3x-1=4\)
\(\Leftrightarrow2x^2-3x-5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{5}{2}\end{matrix}\right.\)
\(a,\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\left(x-1\right)\left(5x+3-3x+8\right)=0\)
\(\left(x-1\right)\left(2x+11\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\2x=-11\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-\frac{11}{2}\end{cases}}}\)
\(b,3x\left(25x+15\right)-35\left(5x+3\right)=0\)
\(15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\left(5x+3\right).5\left(3x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5\left(3x-7\right)=0\end{cases}\Rightarrow\orbr{\begin{cases}5x=-3\\3x-7=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{7}{3}\end{cases}}}\)
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)
= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)
= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x
= (– 3x3 + 3x3 ) + (2x2 - 6x2 + 4x2 ) + (6x – 6x)
= 0 + 0 + 0
= 0
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]
= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5
= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5
= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5
= 0 + 0 – 5
= - 5
Đặt a = 2x2 + 3x - 1, ta đc pt:
a2 - 5.(a + 4) + 24 = 0
=> a2 - 5a - 20 + 24 = 0
=> a2 - 5a + 4 = 0
=> (a - 4)(a - 1) = 0
=> a = 4 hoặc a = 1
+) Khi a = 4 => 2x2 + 3x - 1 = 4 => 2x2 + 3x - 5 = 0 => (x - 1)(2x + 5) = 0 => x = 1 hoặc x = -5/2
+) Khi a = 1 => 2x2 + 3x - 1 = 1 => 2x2 + 3x - 2 = 0 => (x + 2)(2x - 1) = 0 => x = -2 hoặc x = 1/2
Vậy x = 1 , x = -5/2 , x = -2 , x = 1/2
minh moi hoc lop 6