Giải phương trình 

1) 2x2-3x-2=0         ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

a) 

(x2- 4 ) - ( x - 2 )( 3 - 2x ) = 0 

=> x-4 - ( 3x - 2x2 - 6 + 4x ) = 0 

=> x2 + 2x2 - 7x + 2 =0 

=> 3x2 - 7x +2 = 0 

=> x = 1/3 và x = 2

b)

2x3 + 6x2 = x+ 3x 

2x2(x+3) = x(x+3)

<=> x(x+3)(2x-1) = 0 

<=> x=0 x=-3 và x=1/2

3 tháng 5 2016

a)(x2 _4)–(x-2)(3-2x)=0

<=>3x^2-7x+2=0

=>(x-2)(3x-1)=0

=>x-2=0 hoặc 3x-1=0

=>x=2 hoặc x=1/3

b) 2x3+ 6x2 =x2+3x

=> 2x3+5x2-3x=0

<=>2x3+5x2-3x=x(x+3)(2x-1)

=>x(x+3)(2x-1)=0

=>x=0 hoặc x+3=0 hoặc 2x-1=0

=.x=0 hoặc -3 hoặc 1/2

14 tháng 4 2020

a) 2x(x-5)=5(x-5)

<=> 2x(x-5)-5(x-5)=0

<=> (x-5) (2x-5)=0

<=> \(\orbr{\begin{cases}x-5=0\\2x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{5}{2}\end{cases}}}\)

b) x2-x-6=0

<=> x2-3x+2x-6=0

<=> x(x-3)+2(x-3)=0

<=> (x+2)(x-3)=0

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}}\)

14 tháng 4 2020

c) (x-1)(x2+5x-2)-x3+1=0

<=> (x-1)(x2+5x-2)-(x3-1)=0

<=> (x-1)(x2+5x-2)-(x-1)(x2+x+1)=0

<=> (x-1)(x2+5x-2-x2-x-1)=0

<=> (x-1)(4x-3)=0

<=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{4}\end{cases}}}\)

d) e) Bạn viết lại đề được không ạ?

27 tháng 1 2018

Lời giải:

AB,BC,AC tỉ lệ với 4,7,5 AB4=BC7=CA5()

a) Sử dụng công thức đường phân giác kết hợp với () ta có:

MCBM=ACAB=54

MCBM+MC=54+5MCBC=59

MC=59BC=59.18=10 (cm)

b) Sử dụng công thức đường phân giác kết hợp với () ta có:

NCNA=BCAB=74NC7=NA4

Áp dụng tính chất dãy tỉ số bằng nhau:

NC+NA7+4=NC7=NA4=NCNA74

AC11=33=1AC=11 (cm)

c)

Vì AO là phân giác góc PACBO là phân giác góc PBC nên áp dụng công thức đường phân giác:

OPOC=APAC=BPBC

AD tính chất dãy tỉ số bằng nhau:

OPOC=APAC=BPBC=AP+BPAC+BC=ABAC+BC

Theo ()AC=54AB;BC=74AB

OPOC=ABAC+BC=AB54AB+74AB=AB3AB=13

d) Áp dụng công thức đường phân giác:

{MBMC=ABACNCNA=BCABPAPB=ACBCMBMC.NCNA.PAPB=ABAC.BCAB.ACBC=1

(đpcm)

Chứng minh 1AM+1BN+1CP>1AB+1BC+1AC

Ta có:

SABM+SAMC=SABC

MH.AB2+MK.AC2=CL.AB2

AB.sinA2.AM+sinA2.AM.AC=sinA.AC.AB

AM=sinA.AB.ACsinA2.AB+sinA2.AC=2sinA2cosA2.AB.ACsinA2.AB+sinA2.AC

AM=2cosA2.AB.ACAB+AC

1AM=AB+AC2AB.ACcosA2=12cosA2(1AB+1AC)

Tương tự: 1BN=12cosB2(1BA+1BC)

1CP=12cosC2(1CB+1CA)

Cộng theo vế:

1AM+1BN+1CP=12cosA2(1AB+1AC)+12cosB2(1BA+1BC)+12cosC2(1CA+1CB)

>12(1AB+1AC)+12(1BC+1AC)+12(1CB+1CA) (do cosα1 nhưng dấu bằng không xảy ra dokhông thể xảy ra đồng thời TH cosA2=cosB2=cosC2=1 )

1AM+1BN+1CP>1AB+1BC+1CA

Ta có đpcm.