K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

Giả sử phân số \(\frac{5n+1}{6n-1}\) chưa tối giản

Khi đó ( 5n + 1;6n - 1 ) = d > 1

=> 5n + 1 = dq và 6n - 1 = dp

Từ 5n + 1 = dq => 30n + 6 = 6dq (1)

     6n - 1 = dp => 30n - 5 = 5dp (2)

Từ (1) và (2) => 6dq - 5dp = 1

Do đó : d(6q - 5p) = 1 và d chia hết cho 1. Vô lí vì trái với giả sử d > 1

Vậy \(\frac{5n+1}{6n-1}\)là phân số tối giản

30 tháng 1 2016

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

8 tháng 5 2017

Giả sử ƯCLN của (5n+1) và (6n+1) là d, ta cần chứng minh d = 1.

Thật vậy: Do d là ƯCLN của (5n+1) và (6n+1) nên \(\hept{\begin{cases}5n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow6\left(5n+1\right)-5\left(6n+1\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1.\)

Vậy \(\frac{5n+1}{6n+1}\) là phân số tối giản.

7 tháng 5 2017

\(\frac{5n+1}{6n+1}\)là phân số tối giản vì

\(\frac{5n+1}{6n+1}=\frac{5}{6}+\frac{n+1}{n+1}=\frac{5}{6}+1\)

Mà 5/6 là phân số tối giản nên 5n+1/6n+1 tối giản

18 tháng 11 2018

Giả sử ƯCLN của (5n + 1) và (6n + 1) là d, ta cần chứng minh d = 1.

Do d là ƯCLN của (5n + 1) và (6n + 1) nên \(\hept{\begin{cases}5n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow6\left(5n+1\right)-5\left(6n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{5n+1}{6n+1}\)là phân số tối giản.

18 tháng 11 2018

\(\text{Gọi ƯCLN(5n+1;6n+1) = d}\)

\(\Rightarrow5n+1⋮d\)và \(6n+1⋮d\)

\(\Rightarrow\left(6n+1\right)-\left(5n+1\right)⋮d\)

\(\Rightarrow n⋮d\)

\(\Rightarrow5n⋮d\)

Mà \(5n+1⋮d\)

\(\Rightarrow5n+1-5n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\)5n+1 và 6n+1  nguyên tố cùng nhau

=> p/s đó tối giản

6 tháng 4 2017

gọi d là ƯCLN(5n+1;6n+1)

=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d

=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d

=>(30n+6)-(30n+5)chia hết cho d

=> 1 chia hết cho d

=> d= 1

=>5n+1 và 6n+1 là hai snt cùng nhau

Vậy phân số 5n+1/6n+1 là phân số tối giản

11 tháng 3 2018

Gọi \(ƯCLN\left(5n+1;6n+1\right)=d\)

\(\Rightarrow\)\(5n+1⋮d\) và \(6n+1⋮d\)

\(\Rightarrow\)\(6\left(5n+1\right)⋮d\) và \(5\left(6n+1\right)⋮d\)

\(\Rightarrow\)\(30n+6⋮d\) và \(30n+5⋮d\)

\(\Rightarrow\)\(\left(30n+6\right)-\left(30n+5\right)⋮d\)

\(\Rightarrow\)\(30n+6-30n-5⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d=1\)

\(\Rightarrow\)\(5n+1\) và \(6n+1\) là hai số nguyên tố cùng nhau vì có ước chung lớn nhất là 1

Vậy \(A=\frac{5n+1}{6n+1}\) là phân số tối giản 

Chúc bạn học tốt ~

9 tháng 5 2016

goij d là UCLN của 5n+1 và 6n+1

ta có 5n+1 chia hết cho d=> 6(5n+1) chia hết cho d=> 30n+6 chia hết cho d(1)

ta có 6n+1 chia hết cho d=> 5(6n+1) chia hết cho d=> 30n+5 chia hết cho d(2)

lấy (1)-(2)

ta có (30n+6)-(30n+5)chia hết cho d

vậy 1 chia hết cho d

nên d=(1;-1)

vậy phân số đã cho tối giản

20 tháng 8 2015

Bạn vào câu hỏi tương tự đi có câu trả lời của mình đó.

28 tháng 2 2021

fhehuq3

a) \(\frac{n}{2n+1}\)

Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\left(2n+1\right)-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n;2n+1\right)=1\)

\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản

b) \(\frac{2n+3}{4n+8}\)

Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)

\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản

AH
Akai Haruma
Giáo viên
27 tháng 8 2024

Lời giải:
Gọi $d=ƯCLN(5n+6, 6n+7)$

$\Rightarrow 5n+6\vdots d; 6n+7\vdots d$
$\Rightarrow 6(5n+6)-5(6n+7)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$

$\Rightarrow \frac{5n+6}{6n+7}$ là phân số tối giản.