Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UCLN(8n+5;6n+4)
=>*8n+5 chia hết cho d =>3.(8n+5) = 24n+15 chia hết cho d
*6n+4 chia hết cho d => 4.(6n+4)=24n+16 chia hết cho d
Suy ra: (24n+16)-(24n+15) chia hết cho d
=>24n+16-24b-15 chia hết cho d
=>1 chia hết cho d
=>d chỉ có thể là 1
=>điều phải chứng minh
Gọi d là ƯCLN(8n+5;6n+4)
ta có: 8n+5 chia hết cho d => 3.(8n+5) chia hết cho d => 24n+15 chia hết cho d(1)
6n+4 chia hết cho d => 4.(6n+4) chia hết cho d => 24n+16 chia hết cho d(2)
lấy (2)-(1)=>24n+16-(24n+15) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy ƯCLN(8n+5;6n+4) là 1 hay 8n+5/6n+4 là p/s tối giản
a) Gọi d là ƯCLN(5n+4;6n+5)
Ta có: 5n+4 chia hết cho d
6n+5 chia hết cho d
=> (6n+5)-(5n+4)=1 chia hết cho d
=> d thuộc Ư(1)={-1;1}
Vậy \(\frac{5n+4}{6n+5}\) là phân số tối giản (ĐPCM)
b) Gọi d là ƯCLN(15n+5;20n+7)
Ta có: 15n+5 chia hết cho d => (15n+5)x4=60n+20 chia hết cho d (1)
20n+7 chia hết cho d => (20n+7)x3=60n+21 chia hết cho d (2)
Từ (1) và (2) => (60n+21)-(60n+20)=1 chia hết cho d
=> d thuộc Ư(1)={-1;1}
Vậy \(\frac{15n+5}{20n+7}\) là phân số tối giản ( ĐPCM)
gọi Đlà ƯC5n+4\6n+5
=>5n+4 và 6n+5chia het choĐvà Đ=1
=>a)là p\s tối giản
a)gọi d thộc ƯC ( 2n+5,3n+7)
=> 2n+5chia hết cho d 6n+15chia hết cho d
<=> <=> 6n+15-6n-14c/h cho d<=> 1 c/h cho d<=> d=1;-1
và 3n+7 chia hết cho d và 6n+14 c/h cho d
=>A là p số tối giản
b) làm tương tự a). ở đây, nhân 2n-5 lên 3 lần rồi lấy 6n-14-kết q vừa tìm đc thì ta đc d=1
a)gọi d là ƯCLN(2n+5;3n+7)
=>2n+5 chia hết cho d và 3n+7 chia hết cho d
=>(2n+5)-(3n+7) chia hết cho d
hay 3(2n+5)-2(3n+7) chia hết cho d
=>d=1
Vì ƯCLN=1. Nên phân số 2n+5/3n+7 là phân số tối giản
b) làm tương tự như câu a nhé bạn
5n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮65n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮6 *
Giả sử n chẵn =>(n−1)(n+1)(n−1)(n+1) không chia hết 2 (trái với *)
=> n nguyên tố với 2 =>\(\frac{n}{2}\) tối giản
Giả sử n chia hết 3 => (n−1)(n+1)(n−1)(n+1) không chia hết 3 (trái với *)
=> n nguyên tố với 3 =>\(\frac{n}{3}\) tối giản
gọi d là ƯCLN(5n+1;6n+1)
=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d
=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d
=>(30n+6)-(30n+5)chia hết cho d
=> 1 chia hết cho d
=> d= 1
=>5n+1 và 6n+1 là hai snt cùng nhau
Vậy phân số 5n+1/6n+1 là phân số tối giản
Bạn vào câu hỏi tương tự đi có câu trả lời của mình đó.