K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 11 2021

Do n nguyên dương, đặt \(n=m+1\) với m là số tự nhiên

\(\Rightarrow A=2^{3\left(m+1\right)-1}+2^{3\left(m+1\right)+1}+1=2^{3m+2}+2^{3\left(m+1\right)+1}+1\)

\(=4.8^m+2.8^{m+1}+1\)

Do \(8\equiv1\left(mod7\right)\Rightarrow\left\{{}\begin{matrix}8^m\equiv1\left(mod7\right)\\8^{m+1}\equiv1\left(mod7\right)\end{matrix}\right.\)

\(\Rightarrow4.8^m+2.8^{m+1}+1\equiv4+2+1\left(mod7\right)\)

\(\Rightarrow4.8^m+2.8^{m+1}+1⋮7\)

21 tháng 11 2021

có cách nào k dùng mod k ạ?

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

4 tháng 10 2018
25 tháng 5 2020

kmmdjkxmcmkjkdkddfffdfdg

25 tháng 5 2020

Mình nghĩ đề là 33n+1

33n+2+5.33n+1 

33n.32+5.33n.2

33n.9+33n.10

=>33n.19\(⋮\)19

30 tháng 7 2023

Ta có :

\(10\le n\le99\)

\(\Rightarrow21\le2n+1\le201\)

\(\Rightarrow2n+1\) là số chính phương lẻ (1)

\(\Rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)

\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{2n+1}{3n+1}=\dfrac{2.40+1}{3.40+1}=\dfrac{81}{121}=\left(\dfrac{9}{11}\right)^2\left(n=40\right)\)

\(\Rightarrow dpcm\)

\(\Rightarrow n=40⋮40\Rightarrow dpcm\)

3 tháng 4 2020

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

DD
25 tháng 8 2021

\(n\left(3n-1\right)-3n\left(n-2\right)=3n^2-n-\left(3n^2-6n\right)=3n^2-n-3n^2+6n=5n\)

luôn chia hết cho \(5\)với mọi số nguyên \(n\).