K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 11 2021

\(S=1+2+2^2+...+2^{13}+2^{14}\)

\(=\left(1+2+2^2\right)+...+\left(2^{12}+2^{13}+2^{14}\right)\)

\(=\left(1+2+2^2\right)+...+2^{12}\left(1+2+2^2\right)\)

\(=7\left(1+...+2^{12}\right)⋮7\)

21 tháng 11 2021

S = (1 + 2 + 22) + (23 + 24 + 25) + ... + (212 + 213 + 214)

S = (1 + 2 + 22) + 23 . ( 1 + 2 + 22) + ... + 212 . ( 1 + 2 + 22)

S = 7 + 23 . 7 + ... + 212 . 7

Vậy S chia hết cho 7. (nhớ k cho mình nha!)

7 tháng 9 2023

3 mũ mấy vậy bạn . Bạn đánh lại đề nha.

16 tháng 2 2024

3^n nha

 

 

22 tháng 4 2017

a) Ta có :

\(10^n=100.....000\) (\(n\) chữ số \(0\)) có tổng các chữ số là \(1\)

Lại có : \(5^3=125\) có tổng các chữ số là \(8\)

\(\Rightarrow10^n+5^3\) có tổng các chữ số là \(9\)

\(\Rightarrow10^n+5⋮9\rightarrowđpcm\)

~ Chúc bn học tốt ~

22 tháng 4 2017

b) Số có tận cùng là \(3\) khi nâng lên lũy thừa mũ \(4n\) sẽ có tận cùng là chữ số \(1\)

Do đó : \(43^{43}=43^{4.10+3}=43^{4.10}+43^3=\left(......1\right)\left(...7\right)=\left(...7\right)\)

Số có tận cùng là \(7\) khi nâng lên lũy thừa mũ \(4n\) sẽ có tận cùng là \(1\)

Do đó : \(17^{17}=17^{4.4+1}=17^{4.4}+17^1=\left(...1\right)\left(....7\right)=\left(...7\right)\)

\(\Rightarrow43^{43}-17^{17}=\left(....7\right)-\left(...1\right)=\left(...0\right)\)

\(\Rightarrow43^{43}-17^{17}⋮10\rightarrowđpcm\)

~ Học tốt ~

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

21 tháng 10 2018

a) ta có: 3x + 5 chia hết cho x + 1 

=> 3x + 3 + 2 chia hết cho x + 1 

3.(x+1) + 2 chia hết cho x + 1 

mà 3.(x+1) chia hết cho x + 1 

=> 2 chia hết cho x + 1 

...

bn tự làm tiếp nha! phần b làm tương tự

21 tháng 10 2018

c) ta có: 2x2 + 5x + 7 chia hết cho x -1

=> 2x2 -2x + 7x - 7 + 14 chia hết cho x -1

2x.(x-1) + 7.(x-1) + 14 chia hết cho x -1

(x-1).(2x+7) + 14 chia hết cho x -1

mà (x-1).(2x+7) chia hết cho x -1

=> 14 chia hết cho x -1

...

19 tháng 11 2021
2×6²-48:2³
5 tháng 12 2021

cái dấu ^ là dấu nhân đúng ko ??

5 tháng 12 2021

dạ số mũ á bạn

 

4 tháng 2 2022

\(1+2+2^2+2^3+2^4+...+2^{22}+2^{23}\Leftrightarrow\left(1+2\right)+2^2\left(1+2\right)+...+2^{22}\left(1+2\right)\)

\(\Rightarrow3+2^2\cdot3+...2^{22}\cdot3\Leftrightarrow3\cdot\left(2^0+2^1+...+2^{22}\right)⋮3\left(đpcm\right)\)

\(\Rightarrow3\cdot\frac{\left(2^0+2^1+...+2^{22}\right)}{7}\Leftrightarrow3\cdot7\left(2^0+2^1+2^2\right)⋮3,7\left(đpcm\right)\)

30 tháng 10 2021

\(3n+1⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)

\(\Leftrightarrow2n\in\left\{2;0;6;-4\right\}\)

hay \(n\in\left\{1;0;3;-2\right\}\)

2 tháng 1 2024

a; \(x\) + 6 ⋮ \(x\) + 1 (\(x\) ≠ - 1)

   \(x\) + 1 + 5 ⋮ \(x\) + 1

    \(x\) + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}

    \(x\)       \(\in\) {-6; -2; 0; 4}

   \(x\) + 6 ⋮ \(x\) + (-1)     (\(x\) ≠ 1)

   \(x\) + - 1 + 7  ⋮ \(x\) - 1

                  7 ⋮ \(x\) - 1

 \(x\) - 1  \(\in\) Ư(7) = {-7; -1; 1; 7}

 \(x\)        \(\in\) {-6; 0; 2; 8}

 

2 tháng 1 2024

b;   \(x\) + 6 ⋮ \(x\) - 2 (đk \(x\) ≠ 2)

 \(x\) - 2 + 8 ⋮ \(x\) - 2

            8 ⋮  \(x\) - 2

\(x\) - 2 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}

\(x\) \(\in\) {-6; -2; 0; 1; 3; 4; 10}

\(x\) + 6 ⋮ \(x\) + (-2)

\(x\) + 6  ⋮ \(x\) - 2

giống với ý trên