CMR S=1+2+22+...+213+214 chia hết cho 7.
GIÚP MIK VỚI ! Mik đang cần gấp T-T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(10^n=100.....000\) (\(n\) chữ số \(0\)) có tổng các chữ số là \(1\)
Lại có : \(5^3=125\) có tổng các chữ số là \(8\)
\(\Rightarrow10^n+5^3\) có tổng các chữ số là \(9\)
\(\Rightarrow10^n+5⋮9\rightarrowđpcm\)
~ Chúc bn học tốt ~
b) Số có tận cùng là \(3\) khi nâng lên lũy thừa mũ \(4n\) sẽ có tận cùng là chữ số \(1\)
Do đó : \(43^{43}=43^{4.10+3}=43^{4.10}+43^3=\left(......1\right)\left(...7\right)=\left(...7\right)\)
Số có tận cùng là \(7\) khi nâng lên lũy thừa mũ \(4n\) sẽ có tận cùng là \(1\)
Do đó : \(17^{17}=17^{4.4+1}=17^{4.4}+17^1=\left(...1\right)\left(....7\right)=\left(...7\right)\)
\(\Rightarrow43^{43}-17^{17}=\left(....7\right)-\left(...1\right)=\left(...0\right)\)
\(\Rightarrow43^{43}-17^{17}⋮10\rightarrowđpcm\)
~ Học tốt ~
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
a) ta có: 3x + 5 chia hết cho x + 1
=> 3x + 3 + 2 chia hết cho x + 1
3.(x+1) + 2 chia hết cho x + 1
mà 3.(x+1) chia hết cho x + 1
=> 2 chia hết cho x + 1
...
bn tự làm tiếp nha! phần b làm tương tự
\(1+2+2^2+2^3+2^4+...+2^{22}+2^{23}\Leftrightarrow\left(1+2\right)+2^2\left(1+2\right)+...+2^{22}\left(1+2\right)\)
\(\Rightarrow3+2^2\cdot3+...2^{22}\cdot3\Leftrightarrow3\cdot\left(2^0+2^1+...+2^{22}\right)⋮3\left(đpcm\right)\)
\(\Rightarrow3\cdot\frac{\left(2^0+2^1+...+2^{22}\right)}{7}\Leftrightarrow3\cdot7\left(2^0+2^1+2^2\right)⋮3,7\left(đpcm\right)\)
\(3n+1⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow2n\in\left\{2;0;6;-4\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
a; \(x\) + 6 ⋮ \(x\) + 1 (\(x\) ≠ - 1)
\(x\) + 1 + 5 ⋮ \(x\) + 1
\(x\) + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
\(x\) \(\in\) {-6; -2; 0; 4}
\(x\) + 6 ⋮ \(x\) + (-1) (\(x\) ≠ 1)
\(x\) + - 1 + 7 ⋮ \(x\) - 1
7 ⋮ \(x\) - 1
\(x\) - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
\(x\) \(\in\) {-6; 0; 2; 8}
b; \(x\) + 6 ⋮ \(x\) - 2 (đk \(x\) ≠ 2)
\(x\) - 2 + 8 ⋮ \(x\) - 2
8 ⋮ \(x\) - 2
\(x\) - 2 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
\(x\) \(\in\) {-6; -2; 0; 1; 3; 4; 10}
\(x\) + 6 ⋮ \(x\) + (-2)
\(x\) + 6 ⋮ \(x\) - 2
giống với ý trên
\(S=1+2+2^2+...+2^{13}+2^{14}\)
\(=\left(1+2+2^2\right)+...+\left(2^{12}+2^{13}+2^{14}\right)\)
\(=\left(1+2+2^2\right)+...+2^{12}\left(1+2+2^2\right)\)
\(=7\left(1+...+2^{12}\right)⋮7\)
S = (1 + 2 + 22) + (23 + 24 + 25) + ... + (212 + 213 + 214)
S = (1 + 2 + 22) + 23 . ( 1 + 2 + 22) + ... + 212 . ( 1 + 2 + 22)
S = 7 + 23 . 7 + ... + 212 . 7
Vậy S chia hết cho 7. (nhớ k cho mình nha!)