K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 11 2021

\(S=1+2+2^2+...+2^{13}+2^{14}\)

\(=\left(1+2+2^2\right)+...+\left(2^{12}+2^{13}+2^{14}\right)\)

\(=\left(1+2+2^2\right)+...+2^{12}\left(1+2+2^2\right)\)

\(=7\left(1+...+2^{12}\right)⋮7\)

21 tháng 11 2021

S = (1 + 2 + 22) + (23 + 24 + 25) + ... + (212 + 213 + 214)

S = (1 + 2 + 22) + 23 . ( 1 + 2 + 22) + ... + 212 . ( 1 + 2 + 22)

S = 7 + 23 . 7 + ... + 212 . 7

Vậy S chia hết cho 7. (nhớ k cho mình nha!)

4 tháng 2 2022

\(1+2+2^2+2^3+2^4+...+2^{22}+2^{23}\Leftrightarrow\left(1+2\right)+2^2\left(1+2\right)+...+2^{22}\left(1+2\right)\)

\(\Rightarrow3+2^2\cdot3+...2^{22}\cdot3\Leftrightarrow3\cdot\left(2^0+2^1+...+2^{22}\right)⋮3\left(đpcm\right)\)

\(\Rightarrow3\cdot\frac{\left(2^0+2^1+...+2^{22}\right)}{7}\Leftrightarrow3\cdot7\left(2^0+2^1+2^2\right)⋮3,7\left(đpcm\right)\)

13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

2 tháng 5 2015

dễ ợt

s=2010(1+20100+2010^3(1+2010)+............+2010^2009(1+2010)

s=2010.2011+2010^3.2011+.........+2010^2009.2011

s=2011(2010+2010^3+.......+2010^2009) chia hết cho 2011

2 tháng 5 2015

 \(S=\left(2010+2010^2\right)+\left(2010^3+2010^4\right)+...+\left(2010^{2009}+2010^{2010}\right)\)

\(S=2010\left(2010+1\right)+2010^3\left(2010+1\right)+...+2010^{2009}\left(2010+1\right)\)

 \(S=2011.\left(2010+2010^3+2010^5+...+2010^{2009}\right)\) chia hết cho 2011

17 tháng 11 2018

S = 1 + 2 + 23 + ... + 29

=> 2S = 2 + 2+ 23 + ... + 210

=> 2S - S = S = 2 + 2+ 23 + ... + 210 - (1 + 2 + 23 + ... + 29)

=> S = 2 + 2+ 23 + ... + 210 - 1 - 2 - 23 - ... - 29

=> S = 210 - 1

lại có 5.28 = (4 + 1).28 = 4.28 + 28 = 22 . 28 + 28 = 210 + 2mà S = 210 - 1 

=> 5.2> S

23 tháng 10 2016

a)

C=1+3+32+33+34+35+...+311

C=(1+3+32)+(33+34+35)+...+(39+310+311)

C=13+(33.1+33.3+33.32)+...+(39.1+39.3+39.32)

C=13+33.(1+3+32)+...+39.(1+3+32)

C=13.1+33.13+...+39.13

C=13.(1+33+35+37+39)\(⋮\)3

\(\Rightarrow\)C\(⋮\)3

Câu b ghép 4 số lại với nhau rồi làm như trên

6 tháng 12 2018

\(S=1+2+2^2+...+2^{100}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{101}\)

\(\Rightarrow S=2^{101}-1\)

\(\Rightarrow S=2^{101}-1< 2^{122}\)

6 tháng 12 2018

S = 1 + 2 + 2^2 +......+ 2^100

2S = 2 x (1 + 2 + 2^2 +.......+ 2^100)

2S = 2 + 2^2 + 2^3 +....+ 2^100 + 2^101

2S - S = (2 + 2^2 + 2^3 +.....+2^100 + 2^101)-(1+2+2^2+.....+2^100)

S = 2^101 - 1

=> 2^101-1 < 2^122

25 tháng 10 2018

vì 3^1 chia hết cho3

    3^2 chia hết cho 3

  .....

    3^60 chia hết cho 3

mà ta có tính chất :a chia hết cho c

                               b chia hết cho c

                               (a+b) chia hết cho c

                             nên tổng trên chia hết cho 3

Dùng kí hiệu chia hết nha:)

25 tháng 10 2018

còn chia hết cho 4 thì:

3^1+3^2+....+3^60

=(3^1+3^2)+(3^3+3^4)+....+(3^59+3^60)

=12+3^2 x (3+3^2)+.....+3^58 x (3+3^2)

=12+3^2 x 12+....+3^58  x 12

=12 x (3^2 +......+3^58)

=4 x 3  x (3^2+...+3^58) chia hết cho 4