Tìm giá trị n thuộc Z để có biểu thức
A= (5n-7):(n+2) Nhân giá trị số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài làm :
a, ta có : \(A=\frac{5n-7}{n+2}=\frac{5\left(n+2\right)-17}{n+2}=5-\frac{17}{n+2}\)
để A nhận giá trị nguyên thì : \(5-\frac{17}{n+2}\) là số nguyên \(\Rightarrow\left(n+2\right)\) là Ư(17)
\(\Rightarrow\left(n+2\right)\)lần lượt nhận các giá trị \(\pm1,\pm17\)
ta lần lượt :
vậy ta tìm đc n = -3 ; n = -1 ; n = -19 ; n = 15
Với n thuộc Z
Có: \(A=2n^2+5n-3=2n^2+6n-n-3=2n\left(n+3\right)-\left(n+3\right)=\left(2n-1\right)\left(n+3\right)\)
=> \(\left|A\right|=\left|\left(n+3\right)\left(2n-1\right)\right|\)
Để | A | là số nguyên tố \(n+3=\pm1\)hoặc \(2n-1=\pm1\)
+) Với n + 3 = 1 => n =-2 => | A | = 5 là số nguyên tố => n = - 2 thỏa mãn.
+) Với n + 3 = - 1 => n = - 4 => | A | = 9 không là số nguyên tố => loại
+) Với 2n -1 = 1 => n =1 => |A | = 4 loại
+) Với 2n -1 =-1 => n = 0 => | A | = 3 là số nguyên tố => n = 0 thỏa mãn.
Vậy n=-2 hoặc n =0.
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
Để A nguyên thì:
5n - 7 chia hết cho n + 2
=> 5n + 10 - 17 chia hết cho n + 2
=> 5.(n + 2) - 17 chia hết cho n + 2
Mà 5.(n + 2) chia hết cho n + 2
=> 17 chia hết cho n + 2
=> n + 2 thuộc Ư(17) = {-17 ; -1; 1; 17}
=> n thuộc {-19; -3; -1; 15}
Vậy...