Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
Đặt \(N=12n^2-5n-25=\left(3n-5\right)\left(4n+5\right)\)
Do n tự nhiên nên \(\left(4n+5\right)-\left(3n-5\right)=n+10>0\Rightarrow4n+5>3n-5\)
N luôn có ít nhất 2 ước số phân biệt là \(3n-5\) và \(4n+5\)
\(\Rightarrow\) N nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}3n-5=1\\4n+5\text{ là số nguyên tố}\end{matrix}\right.\)
\(3n-5=1\Rightarrow n=2\)
Khi đó \(4n+5=13\) là số nguyên tố (thỏa mãn)
Vậy \(n=2\)
A=(n2-n) - (3n-3)= (n-1)(n-3) là số nguyên tố thì
n-1=1;-1 và n-3 là số nguyên tố => n= 2;0 khi đó n-3=-1;3 là số nguyên tố => n=0 là thỏa mãn
hoặc n-3=1;-1 và n-1 là số nguyên tố => n=4;2 khi đó n-1=3;1 là số nguyên tố => n=4 là thỏa mãn
Vậy n= 0 hoặc n=4
1,\(P=n^4-4-\left(n^2-2\right)\left(5n-9\right)\)
\(P=\left(n^2+2\right)\left(n^2-2\right)-\left(n^2-2\right)\left(5n-9\right)\)
\(P=\left(n^2-2\right)\left(n^2+2-5n+9\right)\)
\(P=\left(n^2-2\right)\left(n^2-5n+7\right)\)
Vậy......
Với n thuộc Z
Có: \(A=2n^2+5n-3=2n^2+6n-n-3=2n\left(n+3\right)-\left(n+3\right)=\left(2n-1\right)\left(n+3\right)\)
=> \(\left|A\right|=\left|\left(n+3\right)\left(2n-1\right)\right|\)
Để | A | là số nguyên tố \(n+3=\pm1\)hoặc \(2n-1=\pm1\)
+) Với n + 3 = 1 => n =-2 => | A | = 5 là số nguyên tố => n = - 2 thỏa mãn.
+) Với n + 3 = - 1 => n = - 4 => | A | = 9 không là số nguyên tố => loại
+) Với 2n -1 = 1 => n =1 => |A | = 4 loại
+) Với 2n -1 =-1 => n = 0 => | A | = 3 là số nguyên tố => n = 0 thỏa mãn.
Vậy n=-2 hoặc n =0.