Cho hàm số y = 1 3 x 3 + mx 2 + ( 2 m - 1 ) x - 1 , với m là tham số. Tìm tất cả các giá trị của m để hàm số đã cho có cực trị.
A . ∀ m > 1 .
B . ∀ m .
C . ∀ m ≠ 1 .
D. Không có giá trị nào của m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{x^2+mx+1}{x+m}=x+\dfrac{1}{x+m}\)
\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1-\dfrac{1}{\left(2+m\right)^2}=0\\\dfrac{2}{\left(m+2\right)^3}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\m< -2\end{matrix}\right.\)
Chọn a
1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)
\(\Delta=2^2-4\left(-m-1\right)=4m+8\)
Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0
=>m<=-2
=>\(m\in\left\{-10;-9;...;-2\right\}\)
=>Có 9 số
Ta có : \(y'=-x^2+2mx+m-2\Rightarrow\Delta'=m^2+m-2\)
Hàm số đồng biến trên đoạn có độ dài bằng 4 <=> phương trình y' =0 có 2 nghiệm phân biệt \(x_1;x_2\) và thỏa mãn :
\(\left|x_1-x_2\right|=4\Leftrightarrow\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=4\end{cases}\)
\(\Leftrightarrow\begin{cases}m^2+m-2>0\\\left(x_1+x_2\right)^2-4x_1.x_2=16\end{cases}\)
\(\Leftrightarrow\begin{cases}m^2+m-2>0\\4m^2+4\left(m-2\right)=16\end{cases}\)
\(\Leftrightarrow m=2\) hoặc \(m=-3\)
Kết luận \(m=2\) hoặc \(m=-3\) thì hàm số đồng biến trên đoạn có độ dài bằng 4
1.
Đồ thị hàm bậc 3 có 2 điểm cực trị nằm về 2 phía trục hoành khi và chỉ khi \(f\left(x\right)=0\) có 3 nghiệm phân biệt
\(\Leftrightarrow x^3+3x^2+mx+m-2=0\) có 3 nghiệm pb
\(\Leftrightarrow x^3+3x^2-2+m\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-2\right)+m\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+m-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+m-2=0\left(1\right)\end{matrix}\right.\)
Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác -1
\(\Leftrightarrow\left\{{}\begin{matrix}1-2+m-2\ne0\\\Delta'=1-\left(m-2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow m< 3\)
2.
Pt hoành độ giao điểm:
\(\dfrac{2x-2}{x+1}=2x+m\)
\(\Rightarrow2x-2=\left(2x+m\right)\left(x+1\right)\)
\(\Leftrightarrow2x^2+mx+m+2=0\) (1)
d cắt (C) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb
\(\Rightarrow\Delta=m^2-8\left(m+2\right)>0\Rightarrow\left[{}\begin{matrix}m>4+4\sqrt{2}\\m< 4-4\sqrt{2}\end{matrix}\right.\)
Khi đó, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{m}{2}\\x_Ax_B=\dfrac{m+2}{2}\end{matrix}\right.\)
\(y_A=2x_A+m\) ; \(y_B=2x_B+m\)
\(\Rightarrow AB^2=\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2=5\)
\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(2x_A-2x_B\right)^2=5\)
\(\Leftrightarrow\left(x_A-x_B\right)^2=1\)
\(\Leftrightarrow\left(x_A+x_B\right)^2-4x_Ax_B=1\)
\(\Leftrightarrow\left(-\dfrac{m}{2}\right)^2-4\left(\dfrac{m+2}{2}\right)=1\)
\(\Leftrightarrow m^2-8m-20=0\Rightarrow\left[{}\begin{matrix}m=10\\m=-2\end{matrix}\right.\)
cho hàm số \(y=\dfrac{x^2+mx-3}{x+2}\) (m la tham số). biết \(y'\left(-1\right)=4\). tính giá trị m?
\(y'=\dfrac{\left(2x+m\right)\left(x+2\right)-\left(x^2+mx-3\right)}{\left(x+2\right)^2}=\dfrac{x^2+4x+2m+3}{\left(x+2\right)^2}\)
\(y'\left(-1\right)=\dfrac{2m}{1}=2m=4\Rightarrow m=2\)
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x+7}-3}{x-2}\left(x< >2\right)\\mx+2023\left(x=2\right)\end{matrix}\right.\)
Để hàm số liên tục tại x=2 thì \(\lim\limits_{x\rightarrow2}f\left(x\right)=F\left(2\right)\)
=>\(\lim\limits_{x\rightarrow2}\dfrac{x+7-9}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=2m+2023\)
=>\(2m+2023=\dfrac{1}{\sqrt{2+7}+3}=\dfrac{1}{6}\)
=>m=-12137/12
Lời giải:
1.PT hoành độ giao điểm:
$x^2-mx-4=0(*)$
Khi $m=3$ thì pt trở thành: $x^2-3x-4=0$
$\Leftrightarrow (x+1)(x-4)=0$
$\Rightarrow x=-1$ hoặc $x=4$
Với $x=-1$ thì $y=(-1)^2=1$. Giao điểm thứ nhất là $(-1;1)$
Với $x=4$ thì $y=4^2=16$. Giao điểm thứ hai là $(4;16)$
2.
$\Delta (*)=m^2+16>0$ với mọi $m\in\mathbb{R}$ nên PT $(*)$ luôn có 2 nghiệm phân biệt $x_1,x_2$, đồng nghĩa với việc 2 ĐTHS luôn cắt nhau tại 2 điểm phân biệt $A(x_1,y_1); B(x_2,y_2)$
Áp dụng định lý Viet:
$x_1+x_2=m$ và $x_1x_2=-4$
Khi đó:
$y_1^2+y_2^2=49$
$\Leftrightarrow (mx_1+4)^2+(mx_2+4)^2=49$
$\Leftrightarrow m^2(x_1^2+x_2^2)+8m(x_1+x_2)=17$
$\Leftrightarrow m^2[(x_1+x_2)^2-2x_1x_2]+8m(x_1+x_2)=17$
$\Leftrightarrow m^2(m^2+8)+8m^2=17$
$\Leftrightarrow m^4+16m^2-17=0$
$\Leftrightarrow (m^2-1)(m^2+17)=0$
$\Rightarrow m^2=1$
$\Leftrightarrow m=\pm 1$
a) Ta có hàm số: \(y=\left(3-m\right)x+4\) đi qua A(1 ; 4)
\(\Leftrightarrow4=\left(3-m\right)\cdot1+4\)
\(\Leftrightarrow4=3-m+4\)
\(\Leftrightarrow4-4=3-m\)
\(\Leftrightarrow m=3\)
b) Ta có hàm số: \(y=mx-x+3=\left(m-1\right)x+3\) y là hàm số bật nhất khi:
\(m+1\ne0\)
\(\Leftrightarrow m\ne1\)
c) Ta có ham số: \(y=\left(m^2-4\right)x-2022\) là hàm số bậc nhất khi:
\(m^2-4\ne0\)
\(\Leftrightarrow m^2\ne4\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ne2\\m\ne-2\end{matrix}\right.\)
d) Ta có 3 hàm số:
\(\left(d_1\right)y=x-2\); \(\left(d_2\right)y=2x-1\); \(\left(d_3\right)=y=\left(m-1\right)x+2m\)
Xét phương trình hoành độ là giao điểm của (d1) và (d2) là:
\(x-2=2x-1\)
\(\Leftrightarrow2x-x=-2+1\)
\(\Leftrightarrow x=-1\)
\(\Rightarrow\left(d_1\right)y=-1-2=-3\)
Nên giao điểm của (d1) và (d2) \(\left(-1;-3\right)\)
\(\Leftrightarrow\left(d_3\right):-3=\left(m-1\right)\cdot-1+2m\)
\(\Leftrightarrow-3=-m+1+2m\)
\(\Leftrightarrow\left(-m+2m\right)=-1-3\)
\(\Leftrightarrow m=-4\)
e) Ta có hàm số: \(y=\left(2a-1\right)x-a+2\) cắt trục hoành tại điểm có hành độ bằng 1
Nên (d) đi qua: \(A\left(1;0\right)\)
\(\Leftrightarrow0=\left(2a-1\right)\cdot1-a+2\)
\(\Leftrightarrow0=2a-1-a+2\)
\(\Leftrightarrow0=a+1\)
\(\Leftrightarrow a=-1\)
Chọn C.
Ta có: y ' = x 2 + 2 mc + 2 m - 1 . Để hàm số có cực trị thì phương trình y'= 0 có hai nghiệm phân biệt
⇔ Δ ' > 0 ⇔ m 2 - 2 m + 1 > 0 ⇔ ( m - 1 ) 2 > 0 ⇔ m ≠ 1 .