Nếu điểm M trong không gian luôn nhìn đoạn thẳng AB cố định dưới một góc vuông thì M thuộc
A. một mặt cầu cố định.
B. một khối cầu cố định.
C. một đường tròn cố định.
D. một hình tròn cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (P) là mặt phẳng đi qua A và vuông góc với đường thẳng a tại H. Khi đó (P) và H cố định.
Ta có: (P) cắt mặt cầu S(O; R) theo đường tròn tâm H và bán kính HA không đổi.
Vậy các mặt cầu tâm O bán kính R = OA luôn đi qua đường tròn cố định tâm H bán kính bằng HA.
+ Gọi O là trung điểm của AB.
Tam giác AMB là vuông tại M có OM là đường trung tuyến ứng với cạnh huyền nên :
Suy ra, M thuộc mặt cầu tâm O, bán kính là
+ Ngược lại, xét mặt cầu với O là trung điểm của AB.
Lấy điểm M bất kì thuộc mặt cầu này. Suy ra: (2)
Từ (1) và (2) suy ra:
⇒ Tam giác MAB vuông tại M.
Kết luận: Vậy tập hợp các điểm M trong không gian luôn nhìn đoạn thẳng AB cố định dưới 1 góc vuông là mặt cầu
Đáp án C
Cách giải:
M di động luôn nhìn đoạn AB dưới một góc vuông ⇒ M thuộc mặt cầu có một đường kính là AB.
Gọi O là trung điểm đoạn thẳng AB, vì tam giác AMB vuông tại M nên trung tuyến MO bằng nửa cạnh huyến, tức MO = AB/2 = R.
Vậy tập hợp các điểm M nhìn AB dwói một góc vuông nằm trêm mặt càu đường kính AB
Ngược lại, lấy M thuốc mặt cầu đwòng kính AB thì MO = AB/2 do đó nếu M khác A và B thì tam giác MAB vuông tại M, còn khi M = A hoặc M = B ta cũng coi M nhìn AB một góc vuông.
Kết luận: Tập hợp các điểm M trong không gian nhín đoạn thẳng AB dưới một góc vuông là mặt cầu đương kính AB
Đáp án A
M thuộc mặt cầu đường kính AB