Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (P) là mặt phẳng đi qua A và vuông góc với đường thẳng a tại H. Khi đó (P) và H cố định.
Ta có: (P) cắt mặt cầu S(O; R) theo đường tròn tâm H và bán kính HA không đổi.
Vậy các mặt cầu tâm O bán kính R = OA luôn đi qua đường tròn cố định tâm H bán kính bằng HA.
+ Gọi O là trung điểm của AB.
Tam giác AMB là vuông tại M có OM là đường trung tuyến ứng với cạnh huyền nên :
Suy ra, M thuộc mặt cầu tâm O, bán kính là
+ Ngược lại, xét mặt cầu với O là trung điểm của AB.
Lấy điểm M bất kì thuộc mặt cầu này. Suy ra: (2)
Từ (1) và (2) suy ra:
⇒ Tam giác MAB vuông tại M.
Kết luận: Vậy tập hợp các điểm M trong không gian luôn nhìn đoạn thẳng AB cố định dưới 1 góc vuông là mặt cầu
Đáp án C
Cách giải:
M di động luôn nhìn đoạn AB dưới một góc vuông ⇒ M thuộc mặt cầu có một đường kính là AB.
Gọi O là trung điểm đoạn thẳng AB, vì tam giác AMB vuông tại M nên trung tuyến MO bằng nửa cạnh huyến, tức MO = AB/2 = R.
Vậy tập hợp các điểm M nhìn AB dwói một góc vuông nằm trêm mặt càu đường kính AB
Ngược lại, lấy M thuốc mặt cầu đwòng kính AB thì MO = AB/2 do đó nếu M khác A và B thì tam giác MAB vuông tại M, còn khi M = A hoặc M = B ta cũng coi M nhìn AB một góc vuông.
Kết luận: Tập hợp các điểm M trong không gian nhín đoạn thẳng AB dưới một góc vuông là mặt cầu đương kính AB
Gọi I là trung điểm của đoạn AA’. Ta có IO // Δ nên tâm O di động trên đường thẳng d cố định đi qua I và song song với ∆ . Mặt cầu tâm O đi qua hai điểm cố định A, A’ , có tâm di động trên đường trung trực d cố định của đoạn AA’. Vậy mặt cầu tâm O luôn luôn chứa đường tròn cố định tâm I có đường kính AA’ nằm trong mặt phẳng AA’ và vuông góc với d.
Ta có
Ta lại có AB′ ⊥ SC nên suy ra AB′ ⊥ (SBC). Do đó AB′ ⊥ B′C
Chứng minh tương tự ta có AD′ ⊥ D′C.
Vậy ∠ ABC = ∠ AB′C = ∠ AC′C = ∠ AD′C = ∠ ADC = 90 °
Từ đó suy ra 7 điểm A, B, C, D, B’, C’, D’ cùng nằm trên mặt cầu đường kính là AC.
Đáp án A
M thuộc mặt cầu đường kính AB