tính A=(3.6-4+7):(23.12+43+6^5) ??????? giúp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5) 24*(15+49)+12*(50+42)
=24*64+12*92
=24*64+12*2*46
=24*64+24*46
=24*(64+46)
=24*110
=2640
10(81+19)+100+50(91+9)
=10.100+100+50.100
=1000+100+5000
=6100
=14.5.35+10.5.5.7+4.5.7
=70.35+50.35+4.35
=35.(70+50+4)
=35.124
=4340
a: \(A=\dfrac{3^3\cdot2^3+3^3\cdot2^2+3^3\cdot1}{-13}=\dfrac{27\left(2^3+2^2+1\right)}{-13}=-27\)
b: \(B=\dfrac{2\cdot2^{12}\cdot3^6+2^{11}\cdot3^9}{2^3\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9}{2^{10}\cdot3^7+2^{10}\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\right)}{2^{10}\cdot3^7\left(1+5\cdot3\right)}=\dfrac{2}{3}\cdot\dfrac{4+27}{1+15}=\dfrac{2}{3}\cdot\dfrac{31}{16}=\dfrac{31}{24}\)
c: \(C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{35}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot2^6-7\right)}=\dfrac{10-9}{5\cdot64-7}=\dfrac{1}{313}\)
\(A=\dfrac{6^3+3\cdot6^2+3^3}{13}\)
\(=\dfrac{3^3\cdot8+3^3\cdot4+3^3}{13}\)
=27
a)
\(2.6^2.3.6^4\text{:}6^5\)
\(=6.6^6.6^5\)
\(=6^7:6^5\)
\(=6^2=36\)
b) \(8.2^5.16:2^{11}\)
\(=2^3.2^5.2^4:2^{11}\)
\(=2^8.2^5:2^{11}\)
\(=2^{12}:2^{11}\)
\(=2\)
c) \(\left(4^4.16\right):\left(4^3.4\right)\)
\(=\left(4^4.4^2\right):4^4\)
\(=4^6:4^4\)
\(=4^2=16\)
a) \(...=2.2^2.3^2.3.2^4.3^4:\left(2^5.3^5\right)=2^7.3^7:2^5.3^5=2^2.3^2=4.9=36\)
b) \(...=2^3.2^5.2^4:2^{11}=2^{12}:2^{11}=2\)
c) \(...=2^8.2^4:\left(2^6.2^2\right)=2^{12}:2^8=2^4=16\)
d) \(...=5.5^3.5^2:5^6=5^6:5^6=1\)
a) \(\frac{205.5^{10}}{100^5}=\frac{41.5^{11}}{5^2.4}=\frac{41.5^9}{4}\)
b) \(\frac{\left(0,9\right)^5}{\left(0,3\right)^5}=\left(0,9:0,3\right)^5=3^5=243\)
c) \(\frac{6^2+3.6+3^2}{-13}=\frac{2^2.3^2+3.6+3^2}{-13}=\frac{3\left(2^2.3+6+3\right)}{-13}=\frac{3.21}{-13}=\frac{63}{-13}\)
d) \(\frac{4^6.9^5.6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5.\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}=\frac{2^{24}.3^{20}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{24}.3^{20}.5}{2^{11}.3^{11}.\left(2.3-1\right)}=\frac{2^{13}.3^9.5}{5}=2^{13}.3^9\)
a: \(=\dfrac{7}{12}\cdot12=7\)
b: \(=\dfrac{3}{8}\cdot\dfrac{25}{7}\cdot56\cdot\left(-4\right)=-300\)
c: \(=\dfrac{3}{7}\cdot\dfrac{7}{3}\cdot\dfrac{2}{5}\cdot20\cdot\dfrac{19}{72}=8\cdot\dfrac{19}{72}=\dfrac{19}{9}\)
d: \(=\dfrac{1}{3}\left(\dfrac{4}{5}+\dfrac{6}{5}\right)=\dfrac{2}{3}\)